Download Free Prospects For Multi Tev Two Beam Linear Colliders Book in PDF and EPUB Free Download. You can read online Prospects For Multi Tev Two Beam Linear Colliders and write the review.

Recent work at CERN and SLAC has opened the possibility of the development of concrete designs for electron positron linear colliders that have a center of mass energy substantially above 1 TeV [1,2]. These designs are based on high gradient, normal conducting acceleration with the power provided by an auxiliary beam that is efficiently accelerated in a fully loaded, low frequency linac. This type of power source offers a flexibility to develop linear collider designs that have a wide range of parameters. In particular, the choice of frequency can be made without regard to the availability of high power RF sources, at least up to about 30 GHz. This paper explores possible linear collider designs taking into account limits on acceleration gradient and beam-beam effects. The study shows that electron positron linear colliders have an energy reach far in excess of 1 TeV. In particular we show that an X-band linear collider powered with conventional sources might be upgraded using two-beam techniques to an energy far above 1 TeV. Thus, the linear collider offers a platform for continued exploration at the energy frontier of High Energy Physics.
The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2 & A, l-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-n-n. The prototype accelerator will be used to study physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.
The purpose of this document is to summarize the work that has been done at SLAC in the last three or four months to assess the possibilities of two-beam linear colliders proposed by Ron Ruth, and to compare these colliders to the current NLC designs and their costs. The work is based on general discussions with C. Adolphsen, D. Burke, J. Irwin, J. Paterson, R. Ruth, T. Lavine and T. Raubenheimer, with considerable work done by the latter two. Given the complexities of these machines, the fact that the designs are far from complete and that all cost estimates are still in a state of flux, it is clear that the conclusions drawn in this report cannot be cast in concrete. On the other hand, it does not seem too early to present the results that have been gathered so far, even if the facts contain significant uncertainties and the costs have large error bars. Now that R. Ruth has returned to SLAC, he will be able to add his point of view to the discussion. At this time, the conclusions presented here are the sole responsibility of the author.
This workshop brought together for the first time accelerator experts as well as experimental and theoretical high energy physicists from all over the world to consider the physics potential of high energy linear electron-positron colliders. A wide variety of physics cases were presented ranging from precision tests of the top quark and electroweak gauge bosons to searches of the intermediate mass Higgs bosons and supersymmetric particles.
To obtain luminosities near 10TUcm/sup /minus/2/sec/sup /minus/1/ in a TeV linear collider, it will probably be essential to accelerate many bunches per RF fill in order to increase the energy transfer efficiency. In this paper we study the transverse dynamics of multiple bunches in a linac, and we examine the effects of several methods of controlling the beam blow-up that would otherwise be induced by transverse dipole wake fields. The methods we study are: damping the transverse modes, adjusting the frequency of the dominant transverse modes so that bunches may be placed near zero-crossings of the transverse wake, and bunch-to-bunch variation of the transverse focusing. We study the utility of these cures in the main linacs of an example of a TeV collider. 16 refs., 4 figs., 2 tabs.
Collider experiments have become essential to studying elementary particles. In particular, lepton collisions such as e⁺e⁻ are ideal from both experimental and theoretical points of view, and are a unique means of probing the new energy region, sub-TeV to TeV. It is a common understanding that a next-generation e⁺e⁻ collider will have to be a linear machine that evades beam-energy losses due to synchrotron radiation. In this book, physics feasibilities at linear colliders are discussed in detail, taking into account the recent progress in high-energy physics.
The Lepton-Photon symposiums ? as represented by the contributions in this volume ? are among the most popular conferences in high energy physics since they give an in-depth snapshots of the status of the field as provided by leading experts.The volume covers the latest results on flavor factories, quantum chromodynamics (QCD), electroweak physics, dark matter searches, neutrino physics and cosmology, from a phenomenological point of view. It also offers a glimpse of the immediate future of the field through summaries on the status of the next generation of high energy accelerators and planned facilities for astroparticle physics.The review nature of the articles makes the volume particularly useful to students, as well as being of interest to established researches in high-energy physics and related fields.
The Lepton-Photon symposiums — as represented by the contributions in this volume — are among the most popular conferences in high energy physics since they give an in-depth snapshots of the status of the field as provided by leading experts.The volume covers the latest results on flavor factories, quantum chromodynamics (QCD), electroweak physics, dark matter searches, neutrino physics and cosmology, from a phenomenological point of view. It also offers a glimpse of the immediate future of the field through summaries on the status of the next generation of high energy accelerators and planned facilities for astroparticle physics.The review nature of the articles makes the volume particularly useful to students, as well as being of interest to established researches in high-energy physics and related fields.