Download Free Projects In Scientific Computation Book in PDF and EPUB Free Download. You can read online Projects In Scientific Computation and write the review.

This interdisciplinary book provides a compendium of projects, plus numerous example programs for readers to study and explore. Designed for advanced undergraduates or graduates of science, mathematics and engineering who will deal with scientific computation in their future studies and research, it also contains new and useful reference materials for researchers. The problem sets range from the tutorial to exploratory and, at times, to "the impossible". The projects were collected from research results and computational dilemmas during the authors tenure as Chief Scientist at NeXT Computer, and from his lectures at Reed College. The content assumes familiarity with such college topics as calculus, differential equations, and at least elementary programming. Each project focuses on computation, theory, graphics, or a combination of these, and is designed with an estimated level of difficulty. The support code for each takes the form of either C or Mathematica, and is included in the appendix and on the bundled diskette. The algorithms are clearly laid out within the projects, such that the book may be used with other symbolic numerical and algebraic manipulation products
This book is a practical guide to the numerical solution of linear and nonlinear equations, differential equations, optimization problems, and eigenvalue problems. It treats standard problems and introduces important variants such as sparse systems, differential-algebraic equations, constrained optimization, Monte Carlo simulations, and parametric studies. Stability and error analysis are emphasized, and the Matlab algorithms are grounded in sound principles of software design and understanding of machine arithmetic and memory management. Nineteen case studies provide experience in mathematical modeling and algorithm design, motivated by problems in physics, engineering, epidemiology, chemistry, and biology. The topics included go well beyond the standard first-course syllabus, introducing important problems such as differential-algebraic equations and conic optimization problems, and important solution techniques such as continuation methods. The case studies cover a wide variety of fascinating applications, from modeling the spread of an epidemic to determining truss configurations.
The major differences between this book and richard's previous title published with TELOS in Jan. '94, are that a) in "Projects" theory was stated, then projects listed as exercises. In "Topics" there will be a set of problems. while the author will refer to some of the more useful algotithms in the "Prjects" text, most algorithms in the "Topics" vilume will be distincly new. Also, b) while "Prjects" in a course book (in context and design) with assigned Problems, "Topics" is inteded as a research reference with stated solutions. The author feels this is an extention of "Projects". "Topics" has a 40-page appendix and no diskette. Finally, the overall style and level of presentation are directed towars the research professional in "Topics", rather than a textbook approach.
This book demonstrates scientific computing by presenting twelve computational projects in several disciplines including Fluid Mechanics, Thermal Science, Computer Aided Design, Signal Processing and more. Each follows typical steps of scientific computing, from physical and mathematical description, to numerical formulation and programming and critical discussion of results. The text teaches practical methods not usually available in basic textbooks: numerical checking of accuracy, choice of boundary conditions, effective solving of linear systems, comparison to exact solutions and more. The final section of each project contains the solutions to proposed exercises and guides the reader in using the MATLAB scripts available online.
Science used to be experiments and theory, now it is experiments, theory and computations. The computational approach to understanding nature and technology is currently flowering in many fields such as physics, geophysics, astrophysics, chemistry, biology, and most engineering disciplines. This book is a gentle introduction to such computational methods where the techniques are explained through examples. It is our goal to teach principles and ideas that carry over from field to field. You will learn basic methods and how to implement them. In order to gain the most from this text, you will need prior knowledge of calculus, basic linear algebra and elementary programming.
This book differs from traditional numerical analysis texts in that it focuses on the motivation and ideas behind the algorithms presented rather than on detailed analyses of them. It presents a broad overview of methods and software for solving mathematical problems arising in computational modeling and data analysis, including proper problem formulation, selection of effective solution algorithms, and interpretation of results.? In the 20 years since its original publication, the modern, fundamental perspective of this book has aged well, and it continues to be used in the classroom. This Classics edition has been updated to include pointers to Python software and the Chebfun package, expansions on barycentric formulation for Lagrange polynomial interpretation and stochastic methods, and the availability of about 100 interactive educational modules that dynamically illustrate the concepts and algorithms in the book. Scientific Computing: An Introductory Survey, Second Edition is intended as both a textbook and a reference for computationally oriented disciplines that need to solve mathematical problems.
This easy-to-read textbook/reference presents an essential guide to object-oriented C++ programming for scientific computing. With a practical focus on learning by example, the theory is supported by numerous exercises. Features: provides a specific focus on the application of C++ to scientific computing, including parallel computing using MPI; stresses the importance of a clear programming style to minimize the introduction of errors into code; presents a practical introduction to procedural programming in C++, covering variables, flow of control, input and output, pointers, functions, and reference variables; exhibits the efficacy of classes, highlighting the main features of object-orientation; examines more advanced C++ features, such as templates and exceptions; supplies useful tips and examples throughout the text, together with chapter-ending exercises, and code available to download from Springer.
Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. This text evolved from a new curriculum in scientific computing that was developed to teach undergraduate science and engineering majors how to use high-performance computing systems (supercomputers) in scientific and engineering applications. Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. The authors begin with a survey of scientific computing and then provide a review of background (numerical analysis, IEEE arithmetic, Unix, Fortran) and tools (elements of MATLAB, IDL, AVS). Next, full coverage is given to scientific visualization and to the architectures (scientific workstations and vector and parallel supercomputers) and performance evaluation needed to solve large-scale problems. The concluding section on applications includes three problems (molecular dynamics, advection, and computerized tomography) that illustrate the challenge of solving problems on a variety of computer architectures as well as the suitability of a particular architecture to solving a particular problem. Finally, since this can only be a hands-on course with extensive programming and experimentation with a variety of architectures and programming paradigms, the authors have provided a laboratory manual and supporting software via anonymous ftp. Scientific and Engineering Computation series
This easy-to-understand textbook presents a modern approach to learning numerical methods (or scientific computing), with a unique focus on the modeling and applications of the mathematical content. Emphasis is placed on the need for, and methods of, scientific computing for a range of different types of problems, supplying the evidence and justification to motivate the reader. Practical guidance on coding the methods is also provided, through simple-to-follow examples using Python. Topics and features: provides an accessible and applications-oriented approach, supported by working Python code for many of the methods; encourages both problem- and project-based learning through extensive examples, exercises, and projects drawn from practical applications; introduces the main concepts in modeling, python programming, number representation, and errors; explains the essential details of numerical calculus, linear, and nonlinear equations, including the multivariable Newton method; discusses interpolation and the numerical solution of differential equations, covering polynomial interpolation, splines, and the Euler, Runge–Kutta, and shooting methods; presents largely self-contained chapters, arranged in a logical order suitable for an introductory course on scientific computing. Undergraduate students embarking on a first course on numerical methods or scientific computing will find this textbook to be an invaluable guide to the field, and to the application of these methods across such varied disciplines as computer science, engineering, mathematics, economics, the physical sciences, and social science.
The essential introduction to computational science—now fully updated and expanded Computational science is an exciting new field at the intersection of the sciences, computer science, and mathematics because much scientific investigation now involves computing as well as theory and experiment. This textbook provides students with a versatile and accessible introduction to the subject. It assumes only a background in high school algebra, enables instructors to follow tailored pathways through the material, and is the only textbook of its kind designed specifically for an introductory course in the computational science and engineering curriculum. While the text itself is generic, an accompanying website offers tutorials and files in a variety of software packages. This fully updated and expanded edition features two new chapters on agent-based simulations and modeling with matrices, ten new project modules, and an additional module on diffusion. Besides increased treatment of high-performance computing and its applications, the book also includes additional quick review questions with answers, exercises, and individual and team projects. The only introductory textbook of its kind—now fully updated and expanded Features two new chapters on agent-based simulations and modeling with matrices Increased coverage of high-performance computing and its applications Includes additional modules, review questions, exercises, and projects An online instructor's manual with exercise answers, selected project solutions, and a test bank and solutions (available only to professors) An online illustration package is available to professors