Download Free Programming The Parallel Port Book in PDF and EPUB Free Download. You can read online Programming The Parallel Port and write the review.

Why purchase expensive add-on cards or bus interfaces when you can develop effective and economical data acquisition and process controls using C programs? Using the under-employed printer adapter (that is, the parallel port of your PC), you can turn your computer into a powerful tool for developing microprocessor applications. Learn how to build a
This book is for programmers, hardware designers, and anyone who uses the PC's parallel port to communicate with printers and other peripheral devices. The tips, tools, and examples in this complete reference will save you time, spark new ideas for your own projects, and help you use all of a port's abilities - including the new high-speed, bidirectional modes.
Why purchase expensive add-on cards or bus interfaces when you can develop effective and economical data acquisition and process controls using C programs? Using the under-employed printer adapter (that is, the parallel port of your PC), you can turn your computer into a powerful tool for developing microprocessor applications. Learn how to build a complete data acquisition system and such varied applications as a CCD camera controller, a photometer interface, and a wave form generator. The book also covers the enhanced parallel port (EPP), the extended capabilities port (ECP), interfacing analog-to-digital converters, and data acquisition under Linux. This extraordinary software approach to interfacing through the parallel port will be especially appealing to programmers involved in control systems design and device development, as well as to those who work with real-time and embedded systems. ;
Device drivers literally drive everything you're interested in--disks, monitors, keyboards, modems--everything outside the computer chip and memory. And writing device drivers is one of the few areas of programming for the Linux operating system that calls for unique, Linux-specific knowledge. For years now, programmers have relied on the classic Linux Device Drivers from O'Reilly to master this critical subject. Now in its third edition, this bestselling guide provides all the information you'll need to write drivers for a wide range of devices.Over the years the book has helped countless programmers learn: how to support computer peripherals under the Linux operating system how to develop and write software for new hardware under Linux the basics of Linux operation even if they are not expecting to write a driver The new edition of Linux Device Drivers is better than ever. The book covers all the significant changes to Version 2.6 of the Linux kernel, which simplifies many activities, and contains subtle new features that can make a driver both more efficient and more flexible. Readers will find new chapters on important types of drivers not covered previously, such as consoles, USB drivers, and more.Best of all, you don't have to be a kernel hacker to understand and enjoy this book. All you need is an understanding of the C programming language and some background in Unix system calls. And for maximum ease-of-use, the book uses full-featured examples that you can compile and run without special hardware.Today Linux holds fast as the most rapidly growing segment of the computer market and continues to win over enthusiastic adherents in many application areas. With this increasing support, Linux is now absolutely mainstream, and viewed as a solid platform for embedded systems. If you're writing device drivers, you'll want this book. In fact, you'll wonder how drivers are ever written without it.
Parallel Programming with OpenACC is a modern, practical guide to implementing dependable computing systems. The book explains how anyone can use OpenACC to quickly ramp-up application performance using high-level code directives called pragmas. The OpenACC directive-based programming model is designed to provide a simple, yet powerful, approach to accelerators without significant programming effort. Author Rob Farber, working with a team of expert contributors, demonstrates how to turn existing applications into portable GPU accelerated programs that demonstrate immediate speedups. The book also helps users get the most from the latest NVIDIA and AMD GPU plus multicore CPU architectures (and soon for Intel® Xeon PhiTM as well). Downloadable example codes provide hands-on OpenACC experience for common problems in scientific, commercial, big-data, and real-time systems. Topics include writing reusable code, asynchronous capabilities, using libraries, multicore clusters, and much more. Each chapter explains how a specific aspect of OpenACC technology fits, how it works, and the pitfalls to avoid. Throughout, the book demonstrates how the use of simple working examples that can be adapted to solve application needs. - Presents the simplest way to leverage GPUs to achieve application speedups - Shows how OpenACC works, including working examples that can be adapted for application needs - Allows readers to download source code and slides from the book's companion web page
Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing
The era of practical parallel programming has arrived, marked by the popularity of the MPI and OpenMP software standards and the emergence of commodity clusters as the hardware platform of choice for an increasing number of organizations. This exciting new book,Parallel Programming in C with MPI and OpenMPaddresses the needs of students and professionals who want to learn how to design, analyze, implement, and benchmark parallel programs in C using MPI and/or OpenMP. It introduces a rock-solid design methodology with coverage of the most important MPI functions and OpenMP directives. It also demonstrates, through a wide range of examples, how to develop parallel programs that will execute efficiently on today’s parallel platforms. If you are an instructor who has adopted the book and would like access to the additional resources, please contact your local sales rep. or Michelle Flomenhoft at: [email protected].
The Parallel Programming Guide for Every Software Developer From grids and clusters to next-generation game consoles, parallel computing is going mainstream. Innovations such as Hyper-Threading Technology, HyperTransport Technology, and multicore microprocessors from IBM, Intel, and Sun are accelerating the movement's growth. Only one thing is missing: programmers with the skills to meet the soaring demand for parallel software. That's where Patterns for Parallel Programming comes in. It's the first parallel programming guide written specifically to serve working software developers, not just computer scientists. The authors introduce a complete, highly accessible pattern language that will help any experienced developer "think parallel"-and start writing effective parallel code almost immediately. Instead of formal theory, they deliver proven solutions to the challenges faced by parallel programmers, and pragmatic guidance for using today's parallel APIs in the real world. Coverage includes: Understanding the parallel computing landscape and the challenges faced by parallel developers Finding the concurrency in a software design problem and decomposing it into concurrent tasks Managing the use of data across tasks Creating an algorithm structure that effectively exploits the concurrency you've identified Connecting your algorithmic structures to the APIs needed to implement them Specific software constructs for implementing parallel programs Working with today's leading parallel programming environments: OpenMP, MPI, and Java Patterns have helped thousands of programmers master object-oriented development and other complex programming technologies. With this book, you will learn that they're the best way to master parallel programming too.
Learn to write C++ programs by interfacing a computer to a wide range of popular and fundamental real-world technologies. Unique and original approach to use the PC to do real things- not just number crunching and graphics – but writing programs to interact with the outside world. Learn C++ programming in an enjoyable and powerful way. Includes a purpose-designed circuit board
Beyond cutting edge, Mueller goes where no computer book author has gone before to produce a real owner's manual that every laptop owner should have. This book shows the upgrades users can perform, the ones that are better left to the manufacturer, and more.