Download Free Programming In Martin Lofs Type Theory Book in PDF and EPUB Free Download. You can read online Programming In Martin Lofs Type Theory and write the review.

In recent years, several formalisms for program construction have appeared. One such formalism is the type theory developed by Per Martin-Löf. Well suited as a theory for program construction, it makes possible the expression of both specifications and programs within the same formalism. Furthermore, the proof rules can be used to derive a correct program from a specification as well as to verify that a given program has a certain property. This book contains a thorough introduction to type theory, with information on polymorphic sets, subsets, monomorphic sets, and a full set of helpful examples.
Type theory is a fast-evolving field at the crossroads of logic, computer science and mathematics. This gentle step-by-step introduction is ideal for graduate students and researchers who need to understand the ins and outs of the mathematical machinery, the role of logical rules therein, the essential contribution of definitions and the decisive nature of well-structured proofs. The authors begin with untyped lambda calculus and proceed to several fundamental type systems, including the well-known and powerful Calculus of Constructions. The book also covers the essence of proof checking and proof development, and the use of dependent type theory to formalise mathematics. The only prerequisite is a basic knowledge of undergraduate mathematics. Carefully chosen examples illustrate the theory throughout. Each chapter ends with a summary of the content, some historical context, suggestions for further reading and a selection of exercises to help readers familiarise themselves with the material.
Intuitionistic type theory can be described, somewhat boldly, as a partial fulfillment of the dream of a universal language for science. This book expounds several aspects of intuitionistic type theory, such as the notion of set, reference vs. computation, assumption, and substitution. Moreover, the book includes philosophically relevant sections on the principle of compositionality, lingua characteristica, epistemology, propositional logic, intuitionism, and the law of excluded middle. Ample historical references are given throughout the book.
This book explores the role of Martin-Lof s constructive type theory in computer programming. The main focus of the book is how the theory can be successfully applied in practice. Introductory sections provide the necessary background in logic, lambda calculus and constructive mathematics, and exercises and chapter summaries are included to reinforce understanding.
Per Martin-Löf's work on the development of constructive type theory has been of huge significance in the fields of logic and the foundations of mathematics. It is also of broader philosophical significance, and has important applications in areas such as computing science and linguistics. This volume draws together contributions from researchers whose work builds on the theory developed by Martin-Löf over the last twenty-five years. As well as celebrating the anniversary of the birth of the subject it covers many of the diverse fields which are now influenced by type theory. It is an invaluable record of areas of current activity, but also contains contributions from N. G. de Bruijn and William Tait, both important figures in the early development of the subject. Also published for the first time is one of Per Martin-Löf's earliest papers.
TACS'91 is the first International Conference on Theoretical Aspects of Computer Science held at Tohoku University, Japan, in September 1991. This volume contains 37 papers and an abstract for the talks presented at the conference. TACS'91 focused on theoretical foundations of programming, and theoretical aspects of the design, analysis and implementation of programming languages and systems. The following range of topics is covered: logic, proof, specification and semantics of programs and languages; theories and models of concurrent, parallel and distributed computation; constructive logic, category theory, and type theory in computer science; theory-based systems for specifying, synthesizing, transforming, testing, and verifying software.
Type theory is one of the most important tools in the design of higher-level programming languages, such as ML. This book introduces and teaches its techniques by focusing on one particularly neat system and studying it in detail. By concentrating on the principles that make the theory work in practice, the author covers all the key ideas without getting involved in the complications of more advanced systems. This book takes a type-assignment approach to type theory, and the system considered is the simplest polymorphic one. The author covers all the basic ideas, including the system's relation to propositional logic, and gives a careful treatment of the type-checking algorithm that lies at the heart of every such system. Also featured are two other interesting algorithms that until now have been buried in inaccessible technical literature. The mathematical presentation is rigorous but clear, making it the first book at this level that can be used as an introduction to type theory for computer scientists.
Category theory is a mathematical subject whose importance in several areas of computer science, most notably the semantics of programming languages and the design of programmes using abstract data types, is widely acknowledged. This book introduces category theory at a level appropriate for computer scientists and provides practical examples in the context of programming language design.