Download Free Production Of Biomass And Bioactive Compounds Using Bioreactor Technology Book in PDF and EPUB Free Download. You can read online Production Of Biomass And Bioactive Compounds Using Bioreactor Technology and write the review.

The bioactive compounds of plants have world-wide applications in pharmaceutical, nutraceutical and food industry with a huge market. In this book, a group of active researchers have addressed on the most recent advances in plant cell and organ cultures for the production of biomass and bioactive compounds using bioreactors. Tremendous efforts have been made to commercialize the production of plant metabolites by employing plant cell and organ cultures in bioreactors. This book emphasizes on the fundamental topics like designing of bioreactors for plant cell and organ cultures, various types of bioreactors including stirred tank, airlift, photo-bioreactor, disposable bioreactor used for plant cell and organ cultures and the advantages and disadvantages of bioreactor cultures. Various strategies for biomass production and metabolite accumulation have been discussed in different plant systems including Korean/Chinese ginseng, Siberian ginseng, Indian ginseng, Echinacea, St. John’s wort, Noni, Chinese licorice, Caterpillar fungus and microalgae. Researches on the industrial application of plant cells and organs with future prospects as well as the biosafety of biomass produced in bioreactors are also described. The topics covered in this book, such as plant cell and organ cultures, hairy roots, bioreactors, bioprocess techniques, will be a valuable reference for plant biotechnologists, plant biologists, pharmacologists, pharmacists, food technologists, nutritionists, research investigators of healthcare industry, academia, faculty and students of biology and biomedical sciences. The multiple examples of large-scale applications of cell and organ cultures will be useful and significant to industrial transformation and real commercialization.
Food toxicology studies how natural or synthetic poisons and toxicants in diverse food products cause harmful, detrimental, or adverse side effects in living organisms. Food toxicology is an important consideration as food supply chain is becoming more multinational in origin, and any contamination or toxic manifestation may cause serious, wide-spread adverse health effects. Food Toxicology covers various aspects of food safety and toxicology, including the study of the nature, properties, effects, and detection of toxic substances in food and their disease manifestations in humans. It will also include other aspects of consumer product safety. The first two chapters discuss the measurement of toxicants and toxicity and the importance of dose-response in food toxicology. Additional chapters discuss the aspects of food associated carcinogenesis and food-derived chemical carcinogenesis, food allergy, pathogens associated with fruits and vegetables, and the detrimental effects of radionuclides exposure. The chapters also cover the most important heavy metal contaminants, namely mercury, lead and vanadium, and Fluoride toxicity, which is extensively discussed in its own chapter. Toxicologists, scientists, researchers in food toxicology, nutritionists, and public health care professionals will find valuable information in this book on all possible intricate areas of food toxicology.
Phytochemicals are receiving increasing attention due to their observed nutritional and health-promoting effects in numerous food applications. As plant secondary metabolites with bioactive properties, they may provide desirable health benefits beyond basic nutrition to reduce chronic disease conditions. Their importance in nutrition and health cannot be overstated as it has generated so much interest and studies focused on elucidating their roles has produced so many outstanding results. Plant phytochemicals are readily used in alternative medicine in South East Asia especially, in China and India and they are becoming widely acceptable worldwide. However, very little is still known about the phytochemicals despite these intense research efforts because of their diverse biological and chemical nature. In this newest addition to the series, Nutraceuticals: Basic Research and Clinical Applications, Plant Food Phytochemicals and Bioactive Compounds in Nutrition and Health provides a comprehensive review of the current state of knowledge in the field of bioactive plant phytochemical compounds, their food sources, bioactivities, bioavailability, extraction, production, and applications. Experts in the field discuss various bioactivities of the notable and promising plant phytochemicals of significance in nutrition and health, e.g., lowering of CVD, hypertension, cholesterol, diabetes, obesity, inflammation, cancer, oxidative stress, neurodegenerative diseases and a host of other chronic disease conditions. Key Features: Describes the various nutritional and bioactive significances of notable and promising plant phytochemicals of significance in nutritional and medical research and their food and/or plant sources Includes various approaches for the quantification, extraction and production of the notable and promising phytochemical compounds in nutrition and health Examines the challenges and promises of plant phytochemical as ingredients for the development of functional foods and nutraceuticals as well as their use in alternative medicine Discusses regulatory issues regarding plant phytochemicals, especially as it pertains to their health claims and use
Bioreactor Technology in Food Processing brings peculiarities, specificities, and updates on bioreactors and bioprocesses related to food and beverage production. The 26 chapters of this book are the result of the participation of more than 70 professionals, including professors, researchers, and experts from the industrial sector from different countries around the world. The chapters cover such topics as history, classification, scale-up, analytical tools, and mathematical and kinetic models for the operation of bioreactors in the food industry. In addition, chapters detail the characteristics of bioreactors for the production of food (bread, cheese, and coffee fermentation) and fermented beverages (beer, wine), distilled beverages, and organic compounds such as enzymes, acids, aromas, and pigments (biocolorants), among others. Key Features: Describes the basic and applied aspects of bioreactor in food processing Gathers information on bioreactors that is scattered in different journals and monographs as reviews and research articles Covers various types of bioreactors including stirred tank, airlift, photo-bioreactor, and disposable bioreactors Gives a broad overview of what exactly is involved in designing a bioreactor and optimizing its performance and finally their applications in the food processing industry The broad interdisciplinary approach of this book will certainly make your reading very interesting, and we hope that it can contribute to knowledge and instigate creative thinking to overcome the challenges that food bioprocessing brings us.
Natural Bioactive Compounds: Technological Advancements deals with the latest breakthroughs in the field of screening, characterization and novel applications of natural bioactive compounds from diverse group of organisms ranging from bacteria, viruses, cyanobacteria, algae, fungi, bryophytes, higher plants, sponges, corals and fishes. Written by some of the most reputed scientists in the field, this book introduces the reader to strategies and methods in the search for bioactive natural products. It is an essential read for researchers and students interested in bioactive natural products, their biological and pharmacological properties, their possible use as chemopreventive or chemotherapeutic agents, and other future potential applications. - Explores natural sources of bioactive compounds, including cyanobacteria, bacteria, viruses, fungi and higher plants - Discusses the potential applications of biological products, such as their use in medicine (antibiotics, cancer research, immunology), as food additives, supplements and technological substances - Analyzes the contributions of emerging or developing technologies for the study of bioactive natural compounds (characterization and purification)
Authoritative guide to the principles, characteristics, engineering aspects, economics, and applications of disposables in the manufacture of biopharmaceuticals The revised and updated second edition of Single-Use Technology in Biopharmaceutical Manufacture offers a comprehensive examination of the most-commonly used disposables in the manufacture of biopharmaceuticals. The authors—noted experts on the topic—provide the essential information on the principles, characteristics, engineering aspects, economics, and applications. This authoritative guide contains the basic knowledge and information about disposable equipment. The author also discusses biopharmaceuticals’ applications through the lens of case studies that clearly illustrate the role of manufacturing, quality assurance, and environmental influences. This updated second edition revises existing information with recent developments that have taken place since the first edition was published. The book also presents the latest advances in the field of single-use technology and explores topics including applying single-use devices for microorganisms, human mesenchymal stem cells, and T-cells. This important book: • Contains an updated and end-to-end view of the development and manufacturing of single-use biologics • Helps in the identification of appropriate disposables and relevant vendors • Offers illustrative case studies that examine manufacturing, quality assurance, and environmental influences • Includes updated coverage on cross-functional/transversal dependencies, significant improvements made by suppliers, and the successful application of the single-use technologies Written for biopharmaceutical manufacturers, process developers, and biological and chemical engineers, Single-Use Technology in Biopharmaceutical Manufacture, 2nd Edition provides the information needed for professionals to come to an easier decision for or against disposable alternatives and to choose the appropriate system.
Plant bioactive compounds are plant-based natural products that display a variety of pharmacological applications. These bioactive compounds are important as medicines, pigments and flavorings since most of the pharmaceutical industries are highly dependent on medicinal plants and their extraction. The types and concentrations of bioactive compounds produced by plants are determined by the species, genotype, physiology, developmental stage and environmental factors during growth, determining the physiological adaptive responses employed by various plant taxonomic groups in coping with the stress and defensive stimuli. In the past two decades there has been a renewed interest in the study of conventional aspects such as elicitors and biotic and abiotic stress factors that influence secondary metabolism during in vitro and in vivo growth of plants. the application of molecular biology tools and techniques are facilitating increased understanding of the signaling processes and pathways involved in the bioactive compounds production in subcellular, cellular, organ and whole plant systems during in vivo and in vitro growth, with application in the metabolic engineering of biosynthetic pathways intermediates. Biosynthesis and Manipulation of Bioactive compounds in Medicinal and Aromatic Plants provides a comprehensive introduction and review of the state-of-the-art biotechnological tools used in enhancement of bioactive compounds in medicinal and aromatic plants. Readers will find a systematic overview of techniques such as Omics, Crisper /Cas9 and RNAi to enhance plant bioactive contents including various in vitro techniques, hairy root culture and transgenic technology to enhance plant bioactive contents using plant tissue culture approaches. The chapters provide an overview of the role of induced mutation, biotic and abiotic stress to increase the bioactive contents in plants, plus the role of endophytes to enhance the contents of plant bioactive compounds and standard operating procedures using hydroponics system of cultivation for significant enhancement of bioactive compounds. This book serves as a single source for researchers working in plant secondary metabolites and the pharmaceutical industry.
Current Developments in Biotechnology and Bioengineering: Bioprocesses, Bioreactors and Controls provides extensive coverage of new developments, state-of-the-art technologies, and potential future trends, reviewing industrial biotechnology and bioengineering practices that facilitate and enhance the transition of processes from lab to plant scale, which is becoming increasingly important as such transitions continue to grow in frequency. Focusing on industrial bioprocesses, bioreactors for bioprocesses, and controls for bioprocesses, this title reviews industrial practice to identify bottlenecks and propose solutions, highlighting that the optimal control of a bioprocess involves not only maximization of product yield, but also taking into account parameters such as quality assurance and environmental aspects. - Describes industrial bioprocesses based on the reaction media - Lists the type of bioreactors used for a specific bioprocess/application - Outlines the principles of control systems in various bioprocesses
Natural compounds obtained from plants represent a tremendous global market due to their use as food additives, cosmetics, in agriculture and in pharmaceuticals. This book provides up-to-date information on various strategies and methods for producing compounds of interest. Leading researchers discuss the latest advances in environmentally friendly natural compound production from plants, making the book a valuable resource for biotechnologists, pharmacists, food technologists and researchers working in the medical and healthcare industries.
This book provides the latest information about hairy root culture and its several applications, with special emphasis on potential of hairy roots for the production of bioactive compounds. Due to high growth rate as well as biochemical and genetic stability, it is possible to study the metabolic pathways related to production of bioactive compounds using hairy root culture. Chapters discuss the feasibility of hairy roots for plant derived natural compounds. Advantages and difficulties of hairy roots for up-scaling studies in bioreactors are included as well as successful examples of hairy root culture of plant species producing bioactive compounds used in food, flavors and pharmaceutical industry. This book is a valuable resource for researchers and students working on the area of plant natural products, phytochemistry, plant tissue culture, medicines, and drug discovery.