Download Free Production And Applications Of Cellulose Nanomaterials Book in PDF and EPUB Free Download. You can read online Production And Applications Of Cellulose Nanomaterials and write the review.

Research into cellulose nanocrystals is currently in an exponential growth phase, with research into potential applications now strengthened by recent advances in nanomanufacturing. The possibility of routine commercial production of these advanced materials is now becoming a reality. Cellulose Nanocrystals: Properties, Production and Applications provides an in-depth overview of the materials science, chemistry and physics of cellulose nanocrystals, and the technical development of advanced materials based on cellulose nanocrystals for industrial and medical applications. Topics covered include: • A comprehensive treatment of the structure, morphology and synthesis of cellulose nanocrystals. • The science and engineering of producing cellulose nanocrystals and the challenges involved in nanomanufacturing on a large industrial scale. • Surface/interface modifications of cellulose nanocrystals for the development of novel biomaterials with attractive structural and functional properties. • The scientific bases for developing cellulose-based nanomaterials with advanced functionalities for industrial/medical applications and consumer products. • Discussions on the (i) reinforcing potential of cellulose nanocrystals in polymer nanocomposites, (ii) utilization of these nanocrystals as efficient templates for developing tunable photonic materials, as well as (iii) applications in sustainable electronics and biomedicine. Cellulose Nanocrystals: Properties, Production and Applications will appeal to audiences in the physical, chemical and biological sciences as well as engineering disciplines. It will be of critical interest to industrialists seeking to develop sustainable new materials for the advanced industrial economies of the 21st century, ranging from adaptive “smart” packaging materials, to new chiral, mesoporous materials for optoelectronics and photonics , to high-performance nanocomposites for structural applications.
Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications presents recent developments in, and applications of, nanocellulose as reinforcement in composite and nanocomposite materials. Written by leading experts, the book covers properties and applications of nanocellulose, including the production of nanocellulose from different biomass resources, the usefulness of nanocellulose as a reinforcement for polymer and paper, and major challenges for successful scale-up production in the future. The chapters draw on cutting-edge research on the use of nanosized cellulose reinforcements in polymer composites that result in advanced material characteristics and significant enhancements in physical, mechanical and thermal properties. The book presents an up-to-date review of the major innovations in the field of nanocellulose and provides a reference material for future research in biomass based composite materials, which is timely due to the sustainable, recyclable and eco-friendly demand for highly innovative materials made from biomass. This book is an ideal source of information for scientific and industrial researchers working in materials science. - Gathers together a broad spectrum of research on nanocellulose, with emphasis on the outstanding reinforcing potential when nanocellulose is included into a polymer matrix or as an additive to paper - Demonstrates systematic approaches and investigations from processing, design, characterization and applications of nanocellulose - Presents a useful reference and technical guide for nanocomposite materials R&D sectors, university academics and postgraduate students (Masters and PhD) and industrialists working in material commercialization
Cellulose is the most important and naturally abundant organic biopolymer in the biosphere. It is the basic structural component of plant cell walls. Cellulose based materials have been utilized by our society as engineering materials for thousands of years and their use continues today as verified by the enormity of the worldwide industries. In recent decades, the conversion of renewable lignocellulosic biomass and natural biopolymers into chemicals, liquid fuels and feed supplements has gained considerable attention. In addition, the gradual depletion of petroleum resources, the lack of space for landfills, concerns over emissions during incineration, and environmental pollution caused due to accumulation of these non-destructible solid wastes has spurred efforts to develop high performance materials which are eco-friendly and sustainable. Keeping in mind the advantages of the bio-based materials from cellulose, this volume, edited by Tri-Dung (T.-D.) Ngo, includes cellulose from the micro- (cellulose fiber) to nanoscale (nanocellulose). This book focuses on the chemistry, production, properties and applications of the cellulose materials in various areas. From the view of sustainable development, the new materials associated with cellulose bio-renewable sources are enormously being addressed. In addition, nanotechnology is a rapidly evolving area of development, as science, engineering and technology have merged to bring nanoscale materials much closer to reality. The book also summarizes the recent developments made in the area of advanced bio-nanomaterials, chemical functionalization of celluloses from the micro- to nanoscale, and their processing and successful utilization for selected applications. A number of critical issues and suggestions for future work are discussed, underscoring the roles of researchers for the efficient development of advanced bio-nanomaterials through value addition to enhance their use.
Cellulose - Fundamental Aspects and Current Trends consists of 10 chapters written by international subject matter experts investigating the characteristics and current applications of this fascinating material. This book will help the reader to develop a deeper understanding about the concepts related to cellulose and the nanocellulose structure, modification, production, dissolution, and application. Biosynthesis mechanisms and medical applications of microbial cellulose are also discussed. This book will serve as the starting point for materials science researchers, engineers, and technologists from diverse backgrounds in physics, chemistry, biology, materials science, and engineering who want to know and better understand the unique characteristics of the most abundant biopolymer on earth.
Comprehensively introduces readers to the production, modifications, and applications of nanocellulose This book gives a thorough introduction to the structure, properties, surface modification, theory, mechanism of composites, and functional materials derived from nanocellulose. It also provides in-depth descriptions of plastics, composites, and functional nanomaterials specifically derived from cellulose nanocrystals, cellulose nanofibrils, and bacterial cellulose. It includes the most recent progress in developing a conceptual framework of nanocellulose, as well as its numerous applications in the design and manufacture of nanocomposites and functional nanomaterials. The book also looks at the relationship between structure and properties. Featuring contributions from many noted experts in the field, Nanocellulose: From Fundamentals to Advanced Materials examines the current status of nanocomposites based on nanocelluloses. It covers surface modification of nanocellulose in the nanocomposites development; reinforcing mechanism of cellulose nanocrystals in nanocomposites; and advanced materials based on self-organization of cellulose nanocrystals. The book studies the role of cellulose nanofibrils in nanocomposites, as well as a potential application based on colloidal properties of cellulose nanocrystals. It also offers strategies to explore biomedical applications of nanocellulose. Provides comprehensive knowledge on the topic of nanocellulose, including the preparation, structure, properties, surface modification and strategy Covers new reports on the application of nanocellulose Summarizes three kinds of nanocellulose (cellulose nanocrystals, cellulose nanofibrils, and bacterial cellulose) and their production, modification, and applications Nanocellulose: From Fundamentals to Advanced Materials is a useful resource for specialist researchers of chemistry, materials, and nanotechnology science, as well as for researchers and students of the subject.
Nanocellulose, a unique and promising natural material extracted from native cellulose, has received immense interest for its broad spectrum of applications owing to its remarkable physical properties, special surface chemistry, and excellent biological properties (biocompatibility, biodegradability and low toxicity). In attempts to meet the requirements of humanity's well-being, biomaterials scientists taking advantage of the structure and properties of nanocellulose aim to develop new and formerly non-existing materials with novel and multifunctional properties.This book highlights the importance of nanocellulose and reviews its synthesis, types, structure and properties. Further, it discusses various biofabrication approaches and applications of nanocellulose-based biomaterials in various fields such as the environment, biomedicine, optoelectronics, pharmaceutics, paper, renewable energy and the food industry. Devised to have a broad appeal, this book will be useful to beginners, who will appreciate its comprehensive approach, as well as active researchers, who will find the focus on recent advancements highly valuable.
Introduction to cellulose nanocomposites; strategies for preparation of cellulose wiskers from microcrystalline cellulose as reinforcement in nanocomposites; self-assembly of cellulose nanocrystals: parabolic focal conic films; cellulose fibrils: isolation, characterization, and capability for technical applications; morphology of cellulose and its nanocomposites; useful insights into cellulose nanocomposites using raman spectroscopy; novel methods for interfacial modification of cellulose - reinforced composites; cellulose nanocrystals for thermoplastic reinforcement: effect of filler surface chemistry on composite properties; the structure and mechanical properties of cellulose nanocomposites prepared by twin screw extrusion; preparation and properties of biopolymer-based nanocomposites films using microcrystalline cellulose; nanocompusites based on cellulose microfibril; cellulose microfibers as reinforcing agents for structural materials; dispersion of soybean stock-based nanofiber in plastic matrix; polysulfone-cellulose nanocomposites; bacterial cellulose and its nanocomposites for biomedical applications.
Biorenewable polymers based nanomaterials are rapidly emerging as one of the most fascinating materials for multifunctional applications. Among biorenewable polymers, cellulose based nanomaterials are of great importance due to their inherent advantages such as environmental friendliness, biodegradability, biocompatibility, easy processing and cost effectiveness, to name a few. They may be produced from biological systems such as plants or be chemically synthesised from biological materials. This book summarizes the recent remarkable achievements witnessed in green technology of cellulose based nanomaterials in different fields ranging from biomedical to automotive. This book also discusses the extensive research developments for next generation nanocellulose-based polymer nanocomposites. The book contains seventeen chapters and each chapter addresses some specific issues related to nanocellulose and also demonstrates the real potentialities of these nanomaterials in different domains. The key features of the book are: Synthesis and chemistry of nanocellulose from different biorenewable resources Different characterization of nanocellulosic materials and their respective polymer nanocomposites Physico-chemical, thermal and mechanical investigation of nanocellulose based polymer nanocomposites Provides elementary information and rich understanding of the present state-of- art of nanocellulose-based materials Explores the full range of applications of different nanocellulose-based materials.
An up-to-date and comprehensive overview summarizing recent achievements, the state of the art, and trends in research into nanocellulose and cellulose nanocomposites. Following an introduction, this ready references discusses the characterization as well surface modification of cellulose nanocomposites before going into details of the manufacturing and the self-assembly of such compounds. After a description of various alternatives, including thermoplastic, thermosetting, rubber, and fully green cellulose nanocomposites, the book continues with their mechanic and thermal properties, as well as crystallization and rheology behavior. A summary of spectroscopic and water sorption properties precedes a look at environmental health and safety of these nanocomposites. With its coverage of a wide variety of materials, important characterization tools and resulting applications, this is an essential reference for beginners as well as experienced researchers.