Download Free Process Mining Techniques For Pattern Recognition Book in PDF and EPUB Free Download. You can read online Process Mining Techniques For Pattern Recognition and write the review.

This book focuses on the theory, practice, and concepts of process mining techniques in detail, especially pattern recognition in diverse society, science, medicine, engineering, and business. The book deliberates several perspectives on process mining techniques in the broader context of data science and big data approaches. Process Mining Techniques for Pattern Recognition: Concepts, Theory, and Practice provides an introduction to process mining techniques and pattern recognition. After that, it delivers the fundamentals of process modelling and mining essential to comprehend the book. The text emphasizes discovery as an important process mining task and includes case studies as well as real-life examples to guide users in successfully applying process mining techniques for pattern recognition in practice. Intended to be an introduction to process mining and pattern recognition for students, academics, and practitioners, this book is perfect for those who want to learn the basics, and also gain an understanding of the concepts on a deeper level.
After a brief presentation of the state of the art of process-mining techniques, Andrea Burratin proposes different scenarios for the deployment of process-mining projects, and in particular a characterization of companies in terms of their process awareness. The approaches proposed in this book belong to two different computational paradigms: first to classic "batch process mining," and second to more recent "online process mining." The book encompasses a revised version of the author's PhD thesis, which won the "Best Process Mining Dissertation Award" in 2014, awarded by the IEEE Task Force on Process Mining.
What are the possibilities for process mining in hospitals? In this book the authors provide an answer to this question by presenting a healthcare reference model that outlines all the different classes of data that are potentially available for process mining in healthcare and the relationships between them. Subsequently, based on this reference model, they explain the application opportunities for process mining in this domain and discuss the various kinds of analyses that can be performed. They focus on organizational healthcare processes rather than medical treatment processes. The combination of event data and process mining techniques allows them to analyze the operational processes within a hospital based on facts, thus providing a solid basis for managing and improving processes within hospitals. To this end, they also explicitly elaborate on data quality issues that are relevant for the data aspects of the healthcare reference model. This book mainly targets advanced professionals involved in areas related to business process management, business intelligence, data mining, and business process redesign for healthcare systems as well as graduate students specializing in healthcare information systems and process analysis.
What Is Process Mining Process mining is a collection of approaches that relates the fields of data science and process management to support the study of operational processes based on event logs. These techniques were developed to help companies improve their business processes. The objective of process mining is to derive insights and take appropriate action from event data. The availability of event data and the aspiration to achieve process improvement are the driving forces behind process mining, which is an essential component of data science. The approaches of process mining make use of event data in order to demonstrate what individuals, machines, and organizations are actually doing. Process mining gives fresh insights that may be utilized to determine the execution paths taken by operational processes and address the performance and compliance concerns that are caused by these processes. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Process Mining Chapter 2: Workflow Chapter 3: Event-Driven Process Chain Chapter 4: Business Process Management Chapter 5: Sequential Pattern Mining Chapter 6: Business Process Discovery Chapter 7: Alpha Algorithm Chapter 8: Conformance Checking Chapter 9: Decision Mining Chapter 10: Artifact-Centric Business Process Model (II) Answering the public top questions about process mining. (III) Real world examples for the usage of process mining in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of process mining' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of process mining.
Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, methodologies, and algorithms, using both classical approaches and hybrid paradigms. The authors emphasize large datasets with overlapping, intractable, or nonlinear boundary classes, and datasets that demonstrate granular computing in soft frameworks. Organized into eight chapters, the book begins with an introduction to PR, data mining, and knowledge discovery concepts. The authors analyze the tasks of multi-scale data condensation and dimensionality reduction, then explore the problem of learning with support vector machine (SVM). They conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.
This book constitutes the refereed proceedings of the 12th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2016, held in New York, NY, USA in July 2016. The 58 regular papers presented in this book were carefully reviewed and selected from 169 submissions. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining.
There is no royal road to science, and only those who do not dread the fatiguing climb of its steep paths have a chance of gaining its luminous summits. Karl Marx A Universial Genius of the 19th Century Many scientists from all over the world during the past two years since the MLDM 2007 have come along on the stony way to the sunny summit of science and have worked hard on new ideas and applications in the area of data mining in pattern r- ognition. Our thanks go to all those who took part in this year's MLDM. We appre- ate their submissions and the ideas shared with the Program Committee. We received over 205 submissions from all over the world to the International Conference on - chine Learning and Data Mining, MLDM 2009. The Program Committee carefully selected the best papers for this year’s program and gave detailed comments on each submitted paper. There were 63 papers selected for oral presentation and 17 papers for poster presentation. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data-mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining. Among these topics this year were special contributions to subtopics such as attribute discre- zation and data preparation, novelty and outlier detection, and distances and simila- ties.
Advances in Data Mining Knowledge Discovery and Applications aims to help data miners, researchers, scholars, and PhD students who wish to apply data mining techniques. The primary contribution of this book is highlighting frontier fields and implementations of the knowledge discovery and data mining. It seems to be same things are repeated again. But in general, same approach and techniques may help us in different fields and expertise areas. This book presents knowledge discovery and data mining applications in two different sections. As known that, data mining covers areas of statistics, machine learning, data management and databases, pattern recognition, artificial intelligence, and other areas. In this book, most of the areas are covered with different data mining applications. The eighteen chapters have been classified in two parts: Knowledge Discovery and Data Mining Applications.
Data Mining for Design and Manufacturing: Methods and Applications is the first book that brings together research and applications for data mining within design and manufacturing. The aim of the book is 1) to clarify the integration of data mining in engineering design and manufacturing, 2) to present a wide range of domains to which data mining can be applied, 3) to demonstrate the essential need for symbiotic collaboration of expertise in design and manufacturing, data mining, and information technology, and 4) to illustrate how to overcome central problems in design and manufacturing environments. The book also presents formal tools required to extract valuable information from design and manufacturing data, and facilitates interdisciplinary problem solving for enhanced decision making. Audience: The book is aimed at both academic and practising audiences. It can serve as a reference or textbook for senior or graduate level students in Engineering, Computer, and Management Sciences who are interested in data mining technologies. The book will be useful for practitioners interested in utilizing data mining techniques in design and manufacturing as well as for computer software developers engaged in developing data mining tools.
Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.Matrix Methods in Data Mining and Pattern Recognition is divided into three parts. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB®. Some mathematical proofs that emphasize the existence and properties of the matrix decompositions are included. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed by the author are: classification of handwritten digits, text mining, text summarization, pagerank computations related to the GoogleÔ search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.Audience The book is intended for undergraduate students who have previously taken an introductory scientific computing/numerical analysis course. Graduate students in various data mining and pattern recognition areas who need an introduction to linear algebra techniques will also find the book useful.Contents Preface; Part I: Linear Algebra Concepts and Matrix Decompositions. Chapter 1: Vectors and Matrices in Data Mining and Pattern Recognition; Chapter 2: Vectors and Matrices; Chapter 3: Linear Systems and Least Squares; Chapter 4: Orthogonality; Chapter 5: QR Decomposition; Chapter 6: Singular Value Decomposition; Chapter 7: Reduced-Rank Least Squares Models; Chapter 8: Tensor Decomposition; Chapter 9: Clustering and Nonnegative Matrix Factorization; Part II: Data Mining Applications. Chapter 10: Classification of Handwritten Digits; Chapter 11: Text Mining; Chapter 12: Page Ranking for a Web Search Engine; Chapter 13: Automatic Key Word and Key Sentence Extraction; Chapter 14: Face Recognition Using Tensor SVD. Part III: Computing the Matrix Decompositions. Chapter 15: Computing Eigenvalues and Singular Values; Bibliography; Index.