Download Free Process Control For Sheet Metal Stamping Book in PDF and EPUB Free Download. You can read online Process Control For Sheet Metal Stamping and write the review.

Process Control for Sheet-Metal Stamping presents a comprehensive and structured approach to the design and implementation of controllers for the sheet metal stamping process. The use of process control for sheet-metal stamping greatly reduces defects in deep-drawn parts and can also yield large material savings from reduced scrap. Sheet-metal forming is a complex process and most often characterized by partial differential equations that are numerically solved using finite-element techniques. In this book, twenty years of academic research are reviewed and the resulting technology transitioned to the industrial environment. The sheet-metal stamping process is modeled in a manner suitable for multiple-input multiple-output control system design, with commercially available sensors and actuators. These models are then used to design adaptive controllers and real-time controller implementation is discussed. Finally, experimental results from actual shop floor deployment are presented along with ideas for further improvement of the technology. Process Control for Sheet-Metal Stamping allows the reader to design and implement process controllers in a typical manufacturing environment by retrofitting standard hydraulic or mechanical stamping presses and as such will be of interest to practising engineers working in metal-working, automotive and aeronautical industries. Academic researchers studying improvements in process control and how these affect the industries in which they are applied will also find the text of value.
Companies continue to struggle to maintain, manage and control sheet metal stamping operations in a manufacturing environment, but proven strategies and procedures can turn things around. Author Thomas Ulrich, who has been in the die construction business since 1964, played a leadership role in developing a successful and comprehensive preventive maintenance process for large body-panel stamping dies at Chrysler Corp. In this step-by-step guidebook, he delivers a technical, methods-centric examination of the challenges of maintaining, managing, and controlling sheet metal stamping operations. You'll learn how outsourcing, downsizing, and slashing costs can hurt firms; how to take internal steps to improve existing manufacturing processes to improve performance, sustainability, and the bottom line; and how to apply specific methods to bring sheet metal operations under control, thus allowing profit centers to flourish. This is a practical and functional guide that any company can use to successfully improve its sheet metal tool and die operations. Written in easy to understand and precise prose, it serves as an indispensable resource for managers, comptrollers, production managers, PM coordinators, engineers, and anyone working on the front lines of a sheet metal stamping operations.
Provides an in-depth understanding of the fundamentals of a wide range of state-of-the-art materials manufacturing processes Modern manufacturing is at the core of industrial production from base materials to semi-finished goods and final products. Over the last decade, a variety of innovative methods have been developed that allow for manufacturing processes that are more versatile, less energy-consuming, and more environmentally friendly. This book provides readers with everything they need to know about the many manufacturing processes of today. Presented in three parts, Modern Manufacturing Processes starts by covering advanced manufacturing forming processes such as sheet forming, powder forming, and injection molding. The second part deals with thermal and energy-assisted manufacturing processes, including warm and hot hydrostamping. It also covers high speed forming (electromagnetic, electrohydraulic, and explosive forming). The third part reviews advanced material removal process like advanced grinding, electro-discharge machining, micro milling, and laser machining. It also looks at high speed and hard machining and examines advances in material modeling for manufacturing analysis and simulation. Offers a comprehensive overview of advanced materials manufacturing processes Provides practice-oriented information to help readers find the right manufacturing methods for the intended applications Highly relevant for material scientists and engineers in industry Modern Manufacturing Processes is an ideal book for practitioners and researchers in materials and mechanical engineering.
Condition modelling and control is a technique used to enable decision-making in manufacturing processes of interest to researchers and practising engineering. Condition Monitoring and Control for Intelligent Manufacturing will be bought by researchers and graduate students in manufacturing and control and engineering, as well as practising engineers in industries such as automotive and packaging manufacturing.
With a specific focus on the needs of the designers and engineers in industrial settings, The Mechanical Systems Design Handbook: Modeling, Measurement, and Control presents a practical overview of basic issues associated with design and control of mechanical systems. In four sections, each edited by a renowned expert, this book answers diverse questions fundamental to the successful design and implementation of mechanical systems in a variety of applications. Manufacturing addresses design and control issues related to manufacturing systems. From fundamental design principles to control of discrete events, machine tools, and machining operations to polymer processing and precision manufacturing systems. Vibration Control explores a range of topics related to active vibration control, including piezoelectric networks, the boundary control method, and semi-active suspension systems. Aerospace Systems presents a detailed analysis of the mechanics and dynamics of tensegrity structures Robotics offers encyclopedic coverage of the control and design of robotic systems, including kinematics, dynamics, soft-computing techniques, and teleoperation. Mechanical systems designers and engineers have few resources dedicated to their particular and often unique problems. The Mechanical Systems Design Handbook clearly shows how theory applies to real world challenges and will be a welcomed and valuable addition to your library.
Descripción del editor: "heet forming fundamentals are thoroughly addressed in this comprehensive reference for the practical and efficient use of sheet forming technologies. The principle variables of sheet forming-including the interactions between variables-are clearly explained, as a basic foundation for the most effective use of computer aided modeling in process and die design.Topics include stress analysis, formability criteria, tooling, and materials for sheet forming. The book also covers the latest developments in sheet metal forming technology, including servo-drive presses and their applications, and advanced cushion systems in mechanical and hydraulic presses." (ASM International).
Examines the types, microstructures and attributes of AHSSAlso reviews the current and future applications, the benefits, trends and environmental and sustainability issues.
Automotive and aerospace components, utensils, and many other products are manufactured by a forming/drawing process on press machines of very thin sheet metal, 0.8 to 1.2 mm. It is imperative to study the effect of all involved parameters on output of this type of manufacturing process. This book offers the readers with application and suitability of various evolutionary, swarm, and bio-inspired optimization algorithms for sheet metal forming processes. Book initiates by presenting basics of metal forming, formability followed by discussion of process parameters in detail, prominent modes of failure, basics of optimization and various bioinspired approaches followed by optimization studies on various industrial components applying bioinspired optimization algorithms. Key Features: • Focus on description of basic investigation of metal forming, as well as evolutionary optimization • Presentation of innovative optimization methodologies to close the gap between those formulations and industrial problems, aimed at industrial professionals • Includes mathematical modeling of drawing/forming process • Discusses key performance parameters, such as Thinning, Fracture, and Wrinkling • Includes both numerical and experimental analysis
Edited by prominent researchers and with contributions from experts in their individual areas, Intelligent Energy Field Manufacturing: Interdisciplinary Process Innovations explores a new philosophy of engineering. An in-depth introduction to Intelligent Energy Field Manufacturing (EFM), this book explores a fresh engineering methodology that not only integrates but goes beyond methodologies such as Design for Six Sigma, Lean Manufacturing, Concurrent Engineering, TRIZ, green and sustainable manufacturing, and more. This book gives a systematic introduction to classic non-mechanical manufacturing processes as well as offering big pictures of some technical frontiers in modern engineering. The book suggests that any manufacturing process is actually a process of injecting human intelligence into the interaction between material and the various energy fields in order to transfer the material into desired configurations. It discusses technological innovation, dynamic M-PIE flows, the generalities of energy fields, logic functional materials and intelligence, the open scheme of intelligent EFM implementation, and the principles of intelligent EFM. The book takes a highly interdisciplinary approach that includes research frontiers such as micro/nano fabrication, high strain rate processes, laser shock forming, materials science and engineering, bioengineering, etc., in addition to a detailed treatment of the so called "non-traditional" manufacturing processes, which covers waterjet machining, laser material processing, ultrasonic material processing, EDM/ECM, etc. Filled with illustrative pictures, figures, and tables that make technical materials more absorbable, the book cuts across multiple engineering disciplines. The majority of books in this area report the facts of proven knowledge, while the behind-the-scenes thinking is usually neglected. This book examines the big picture of manufacturing in depth before diving into the deta