Download Free Proceedings Of The Xxi International Conference On Atomic Physics Book in PDF and EPUB Free Download. You can read online Proceedings Of The Xxi International Conference On Atomic Physics and write the review.

This unique book highlights the state of the art of the booming field of atomic physics in the early 21st century. It contains the majority of the invited papers from an ongoing series of conferences, held every two years, devoted to forefront research and fundamental studies in basic atomic physics, broadly defined. This conference, held at the University of Connecticut in July 2008, is part of a series of conferences, which began in 1968 and had its historical origins in the molecular beam conferences of the I. I. Rabi group. It provides an archival and up-to-date summary of current research on atoms and simple molecules as well as their interactions with each other and with external fields, including degenerate Bose and Fermi quantum gases and interactions involving ultrafast lasers, strong field control of X-ray processes, and nanoscale and mesoscopic quantum systems. The work of three recent Nobel Laureates in atomic physics is included, beginning with a lecture by Eric Cornell on “When Is a Quantum Gas a Quantum Liquid?”. There are also papers by Laureates Steven Chu and Roy Glauber. The volume also contains the IUPAP Young Scientist Prize lecture by Cheng Chin on “Exploring Universality of Few-Body Physics Based on Ultracold Atoms Near Feshbach Resonances”.
The 21st conference proceedings continue the tradition of the ICPS series. The proceedings cover all aspects of semiconductor physics, including those related to materials, processing and devices. Plenary and invited speakers address areas of major interest.
This book constitutes the proceedings of the First International Conference on Quantum Communication and Quantum Networking, QuantumCom 2009, held in Naples, Italy, in October 2009. The 38 full papers were selected from numerous submissions. This conference has been devoted to the discussion of new challenges in quantum communication and quantum networking that extends from the nanoscale devices to global satellite communication networks. It placed particular emphasis on basic quantum science effects and on emerging technological solutions leading to practical applications in the communication industry, culminating with a special section on Hybrid Information Processing.
Quantum computers, though not yet available on the market, will revolutionize the future of information processing. Quantum computers for special purposes like quantum simulators are already within reach. The physics of ultracold atoms, ions and molecules offer unprecedented possibilities of control of quantum many body systems and novel possibilities of applications to quantum information processing and quantum metrology. Particularly fascinating is the possibility of using ultracold atoms in lattices to simulate condensed matter or even high energy physics. This book provides a complete and comprehensive overview of ultracold lattice gases as quantum simulators. It opens up an interdisciplinary field involving atomic, molecular and optical physics, quantum optics, quantum information, condensed matter and high energy physics. The book includes some introductory chapters on basic concepts and methods, and then focuses on the physics of spinor, dipolar, disordered, and frustrated lattice gases. It reviews in detail the physics of artificial lattice gauge fields with ultracold gases. The last part of the book covers simulators of quantum computers. After a brief course in quantum information theory, the implementations of quantum computation with ultracold gases are discussed, as well as our current understanding of condensed matter from a quantum information perspective.
This volume is the record of the first meeting of Chinese physicists from Mainland China, Taiwan, Hong Kong, as well as the rest of the world. The participants included all four Nobel laureates of Chinese origin, the Presidents of Academia on both shores of the Taiwan Straits, academicians, OCPA and APS prize recipients, and leading researchers in many areas of physics. Included in the volume are the plenary talks of T D Lee, C N Yang, reports from all four major research facilities, as well as most of the invited papers and abstracts from the poster sessions.
Gas phase ion chemistry is a broad field that has many applications and which encompasses various branches of chemistry and physics. Advances in Gas Phase Ion Chemistry, Volume 4, describes innovative ways of studying reactions as well as the application of unique apparatuses to problems in this field. This volume contains a series of chapters, in the general area of gas phase chemistry and physics, which are at the cutting edge of research. The chapters are not meant to be general reviews, but focus on the author's own work. They focus on both experimental and theoretical work, which gives a balance to the volume. Applications are included to appeal to a wider audience and to broaden the knowledge of the more fundamentally inclined. An application to environmental pollution monitoring and medical monitoring of breath is included. With successive volumes, the coverage broadens to include more current research in the title area. The book is aimed at graduate researchers, university faculty and graduates in industry. The editors have made a specific effort to include contributions from those relatively new to the field, which brings in new ideas and perspectives, as well as those more established workers, who bring a wealth of experience.
Carl Wieman's contributions have had a major impact on defining the field of atomic physics as it exists today. His ground-breaking research has included precision laser spectroscopy; using lasers and atoms to provide important table-top tests of theories of elementary particle physics; the development of techniques to cool and trap atoms using laser light, particularly in inventing much simpler, less expensive ways to do this; the understanding of how atoms interact with one another and light at ultracold temperatures; and the creation of the first Bose-Einstein condensation in a dilute gas, and the study of the properties of this condensate. In recent years, he has also turned his attention to physics education and new methods and research in that area. This indispensable volume presents his collected papers, with annotations from the author, tracing his fascinating research path and providing valuable insight about the significance of the works.
Florence, Italy, 4-9 June 2000