Download Free Proceedings Of The Northwestern Homotopy Theory Conference Book in PDF and EPUB Free Download. You can read online Proceedings Of The Northwestern Homotopy Theory Conference and write the review.

This 1987 volume presents a collection of papers given at the 1985 Durham Symposium on homotopy theory. They survey recent developments in the subject including localisation and periodicity, computational complexity, and the algebraic K-theory of spaces.
This volume contains the proceedings of the Second Mid-Atlantic Topology Conference, held from March 12–13, 2016, at Johns Hopkins University in Baltimore, Maryland. The focus of the conference, and subsequent papers, was on applications of innovative methods from homotopy theory in category theory, algebraic geometry, and related areas, emphasizing the work of younger researchers in these fields.
The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.
This volume presents the proceedings from the month-long program held at Johns Hopkins University (Baltimore, MD) on homotopy theory, sponsored by the Japan-U.S. Mathematics Institute (JAMI). The book begins with historical accounts on the work of Professors Peter Landweber and Stewart Priddy. Central among the other topics are the following: 1. classical and nonclassical theory of $H$-spaces, compact groups, and finite groups, 2. classical and chromatic homotopy theory andlocalization, 3. classical and topological Hochschild cohomology, 4. elliptic cohomology and its relation to Moonshine and topological modular forms, and 5. motivic cohomology and Chow rings. This volume surveys the current state of research in these areas and offers an overview of futuredirections.
Contains papers presented at the conference on Banach Algebras and Several Complex Variables held June 21-24, 1983, to honor Professor Charles E Rickart upon his retirement from Yale University. This work includes articles that present advances in topics related to Banach algebras, function algebras and infinite dimensional holomorphy.
Sonya Kovalevskaya was a distinguished mathematician and considered by her contemporaries to be among the best of her generation. This work contains background material about Kovalevskaya's life and work, including a discussion of how she has been perceived by the mathematical community over the last century.
Contains the proceedings of an AMS Special Session on the Mathematics of Nonlinear Science, held in Phoenix in January 1989. The area of research encompasses a large and rapidly growing set of ideas concerning the relationship of mathematics to science, in which the fundamental laws of nature are extended beyond common sense into new areas where the dual aspects of order and chaos abound.
The area of nonstrictly hyperbolic conservation laws is emerging as an important field, not only because it developed from applications of current interest, such as reservoir simulation, visco-elasticity, and multiphase flow, but also because the subject raises interesting mathematical questions of well-posedness, the structure of solutions, and admissibility criteria for weak solutions. The papers in this collection are based on talks presented at an AMS Special Session, held in Anaheim, California, in January 1985. Requiring some background in conservation laws, this collection will be of interest to research mathematicians working in the field of nonstrictly hyperbolic partial differential equations, as well as students who are learning the area and are looking for new applications and challenging problems in this field. The collection provides an overview of the field, examples of applications, descriptions of available techniques, and a bibliography of the literature.
Since its genesis more than thirty-five years ago, the field of computer vision has been known by various names, including pattern recognitions, image analysis, and image understanding. The central problem of computer vision is obtaining descriptive information by computer analysis of images of a scene. Together with the related fields of image processing and computer graphics, it has become an established discipline at the interface between computer science and electrical engineering. This volume contains fourteen papers presented at the AMS Special Session on Geometry Related to Computer Vision, held in Hoboken, New Jersey in Ooctober 1989. This book makes the results presented at the Special Session, which previously had been available only in the computer science literature, more widely available within the mathematical sciences community. Geometry plays a major role in computer vision since scene descriptions always involve geometrical properties of, and relations among, the objects of surfaces in the scene. The papers in this book provide a good sampling of geometric problems connected with computer vision. They deal with digital lines and curves, polygons, shape decompositions, digital connectedness and surfaces, digital metrics, and generalizations to higher-dimensional and graph-structured "spaces". Aimed at computer scientists specializing in image processing, computer vision, and pattern recognition - as well as mathematicians interested in applications to computer science - this book will provide readers with a view of how geometry is currently being applied to problems in computer vision.