Download Free Proceedings Of The International Congress Of Mathematicians 2010 Icm 2010 Book in PDF and EPUB Free Download. You can read online Proceedings Of The International Congress Of Mathematicians 2010 Icm 2010 and write the review.

ICM 2010 proceedings comprises a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.
The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.
In this memoir the authors revisit Almgren's theory of $Q$-valued functions, which are functions taking values in the space $\mathcal{A}_Q(\mathbb{R}^{n})$ of unordered $Q$-tuples of points in $\mathbb{R}^{n}$. In particular, the authors: give shorter versions of Almgren's proofs of the existence of $\mathrm{Dir}$-minimizing $Q$-valued functions, of their Holder regularity, and of the dimension estimate of their singular set; propose an alternative, intrinsic approach to these results, not relying on Almgren's biLipschitz embedding $\xi: \mathcal{A}_Q(\mathbb{R}^{n})\to\mathbb{R}^{N(Q,n)}$; improve upon the estimate of the singular set of planar $\mathrm{D}$-minimizing functions by showing that it consists of isolated points.
In the context of the Fourth Industrial Revolution, a world of continuous alterations is glimpsed where science and technology are at the base of economic competitiveness and where innovation plays a strategic role in global competition, so that they are forced to cover a series of requirements to compete successfully in an increasingly globalized economy, including high investments in both education and research. Along these lines, the formation of mathematical learning is important because it is oriented towards the development of a set of skills with the aim of resolving situations of daily and professional lives. It focuses on the acquisition of employing the different ways of representing information in the form of models, constructions, and graphs to determine the best decision making. In this sense, it includes the mastery of the handling of numbers, measures, and structures to carry out the interpretation of operations and representations of a quantitative nature on personal and professional situations. For a society to favor innovation, the use of mathematical information is an essential condition that allows the development of creativity and analysis of information. Mathematics education plays a vital role in this development. Developing Mathematical Literacy in the Context of the Fourth Industrial Revolution studies the formation of mathematical abilities in the context of the Fourth Industrial Revolution regarding its development of both teaching and learning strategies, as well as the use of ICT and its use in the development of this discipline in students. It is important that teachers of any educational level reorient their teaching strategies and their role as educators. Therefore, the chapters discuss up-to-date and relevant information on teaching and didactic tasks in the subject of mathematics. This book highlights mathematical pedagogies, ICT in mathematics learning, teacher training, and classroom strategies for mathematics. It is intended for teachers, pedagogical advisors, business trainers, higher education staff, administrators, teacher educators, practitioners, stakeholders, researchers, academicians, and students interested in mathematical literacy in the fourth industrial revolution.
Alan Turing was an inspirational figure who is now recognised as a genius of modern mathematics. In addition to leading the Allied forces' code-breaking effort at Bletchley Park in World War II, he proposed the theoretical foundations of modern computing and anticipated developments in areas from information theory to computer chess. His ideas have been extraordinarily influential in modern mathematics and this book traces such developments by bringing together essays by leading experts in logic, artificial intelligence, computability theory and related areas. Together, they give insight into this fascinating man, the development of modern logic, and the history of ideas. The articles within cover a diverse selection of topics, such as the development of formal proof, differing views on the Church–Turing thesis, the development of combinatorial group theory, and Turing's work on randomness which foresaw the ideas of algorithmic randomness that would emerge many years later.
Applications in modern biotechnology and molecular medicine often require simulation of biomolecular systems in atomic representation with immense length and timescales that are far beyond the capacity of computer power currently available. As a consequence, there is an increasing need for reduced models that describe the relevant dynamical properties while at the same time being less complex. In this book the authors exploit the existence of metastable sets for constructing such a reduced molecular dynamics model, the so-called Markov state model (MSM), with good approximation properties on the long timescales. With its many examples and illustrations, this book is addressed to graduate students, mathematicians, and practical computational scientists wanting an overview of the mathematical background for the ever-increasing research activity on how to construct MSMs for very different molecular systems ranging from peptides to proteins, from RNA to DNA, and via molecular sensors to molecular aggregation. This book bridges the gap between mathematical research on molecular dynamics and its practical use for realistic molecular systems by providing readers with tools for performing in-depth analysis of simulation and data-analysis methods. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
The philosophy of mathematics is an exciting subject. Philosophy of Mathematics: Classic and Contemporary Studies explores the foundations of mathematical thought. The aim of this book is to encourage young mathematicians to think about the philosophical issues behind fundamental concepts and about different views on mathematical objects and mathematical knowledge. With this new approach, the author rekindles an interest in philosophical subjects surrounding the foundations of mathematics. He offers the mathematical motivations behind the topics under debate. He introduces various philosophical positions ranging from the classic views to more contemporary ones, including subjects which are more engaged with mathematical logic. Most books on philosophy of mathematics have little to no focus on the effects of philosophical views on mathematical practice, and no concern on giving crucial mathematical results and their philosophical relevance, consequences, reasons, etc. This book fills this gap. The book can be used as a textbook for a one-semester or even one-year course on philosophy of mathematics. "Other textbooks on the philosophy of mathematics are aimed at philosophers. This book is aimed at mathematicians. Since the author is a mathematician, it is a valuable addition to the literature." - Mark Balaguer, California State University, Los Angeles "There are not many such texts available for mathematics students. I applaud efforts to foster the dialogue between mathematics and philosophy." - Michele Friend, George Washington University and CNRS, Lille, France
This book lays the foundation for a theory of coarse groups: namely, sets with operations that satisfy the group axioms “up to uniformly bounded error”. These structures are the group objects in the category of coarse spaces, and arise naturally as approximate subgroups, or as coarse kernels. The first aim is to provide a standard entry-level introduction to coarse groups. Extra care has been taken to give a detailed, self-contained and accessible account of the theory. The second aim is to quickly bring the reader to the forefront of research. This is easily accomplished, as the subject is still young, and even basic questions remain unanswered. Reflecting its dual purpose, the book is divided into two parts. The first part covers the fundamentals of coarse groups and their actions. Here the theory of coarse homomorphisms, quotients and subgroups is developed, with proofs of coarse versions of the isomorphism theorems, and it is shown how coarse actions are related to fundamental aspects of geometric group theory. The second part, which is less self-contained, is an invitation to further research, where each thread leads to open questions of varying depth and difficulty. Among other topics, it explores coarse group structures on set-groups, groups of coarse automorphisms and spaces of controlled maps. The main focus is on connections between the theory of coarse groups and classical subjects, including: number theory; the study of bi-invariant metrics on groups; quasimorphisms and stable commutator length; groups of outer automorphisms; and topological groups and their actions. The book will primarily be of interest to researchers and graduate students in geometric group theory, topology, category theory and functional analysis, but some parts will also be accessible to advanced undergraduates.
Landscape of 21st Century Mathematics offers a detailed cross section of contemporary mathematics. Important results of the 21st century are motivated and formulated, providing an overview of recent progress in the discipline. The theorems presented in this book have been selected among recent achievements whose statements can be fully appreciated without extensive background. Grouped by subject, the selected theorems represent all major areas of mathematics: number theory, combinatorics, analysis, algebra, geometry and topology, probability and statistics, algorithms and complexity, and logic and set theory. The presentation is self-contained with context, background and necessary definitions provided for each theorem, all without sacrificing mathematical rigour. Where feasible, brief indications of the main ideas of a proof are given. Rigorous yet accessible, this book presents an array of breathtaking recent advances in mathematics. It is written for everyone with a background in mathematics, from inquisitive university students to mathematicians curious about recent achievements in areas beyond their own.