Download Free Proceedings Of The Ieee Signal Processing Workshop On Higher Order Statistics Book in PDF and EPUB Free Download. You can read online Proceedings Of The Ieee Signal Processing Workshop On Higher Order Statistics and write the review.

This text covering the 1997 IEEE Signal Processing Workshop on High-Order Statistics is designed for researchers, professors, practitioners, students and other computing professionals.
In the signal-processing research community, a great deal of progress in higher-order statistics (HOS) began in the mid-1980s. These last fifteen years have witnessed a large number of theoretical developments as well as real applications. Blind Estimation Using Higher-Order Statistics focuses on the blind estimation area and records some of the major developments in this field. Blind Estimation Using Higher-Order Statistics is a welcome addition to the few books on the subject of HOS and is the first major publication devoted to covering blind estimation using HOS. The book provides the reader with an introduction to HOS and goes on to illustrate its use in blind signal equalisation (which has many applications including (mobile) communications), blind system identification, and blind sources separation (a generic problem in signal processing with many applications including radar, sonar and communications). There is also a chapter devoted to robust cumulant estimation, an important problem where HOS results have been encouraging. Blind Estimation Using Higher-Order Statistics is an invaluable reference for researchers, professionals and graduate students working in signal processing and related areas.
Higher-Order Statistical Signal Processing brings together some most recent innovations in the field of higher-order statistical signal processing. It is structured to provide a comprehensive understanding of the fundamentals of the discipline, as well as a treatment of recent advances.
Many processes in nature arise from the interaction of periodic phenomena with random phenomena. The results are processes that are not periodic, but whose statistical functions are periodic functions of time. These processes are called cyclostationary and are an appropriate mathematical model for signals encountered in many fields including communications, radar, sonar, telemetry, acoustics, mechanics, econometrics, astronomy, and biology. Cyclostationary Processes and Time Series: Theory, Applications, and Generalizations addresses these issues and includes the following key features. - Presents the foundations and developments of the second- and higher-order theory of cyclostationary signals - Performs signal analysis using both the classical stochastic process approach and the functional approach for time series - Provides applications in signal detection and estimation, filtering, parameter estimation, source location, modulation format classification, and biological signal characterization - Includes algorithms for cyclic spectral analysis along with Matlab/Octave code - Provides generalizations of the classical cyclostationary model in order to account for relative motion between transmitter and receiver and describe irregular statistical cyclicity in the data
ADVANCES IN HEAVY TAILED RISK MODELING A cutting-edge guide for the theories, applications, and statistical methodologies essential to heavy tailed risk modeling Focusing on the quantitative aspects of heavy tailed loss processes in operational risk and relevant insurance analytics, Advances in Heavy Tailed Risk Modeling: A Handbook of Operational Risk presents comprehensive coverage of the latest research on the theories and applications in risk measurement and modeling techniques. Featuring a unique balance of mathematical and statistical perspectives, the handbook begins by introducing the motivation for heavy tailed risk processes. A companion with Fundamental Aspects of Operational Risk and Insurance Analytics: A Handbook of Operational Risk, the handbook provides a complete framework for all aspects of operational risk management and includes: Clear coverage on advanced topics such as splice loss models, extreme value theory, heavy tailed closed form loss distribution approach models, flexible heavy tailed risk models, risk measures, and higher order asymptotic approximations of risk measures for capital estimation An exploration of the characterization and estimation of risk and insurance modeling, which includes sub-exponential models, alpha-stable models, and tempered alpha stable models An extended discussion of the core concepts of risk measurement and capital estimation as well as the details on numerical approaches to evaluation of heavy tailed loss process model capital estimates Numerous detailed examples of real-world methods and practices of operational risk modeling used by both financial and non-financial institutions Advances in Heavy Tailed Risk Modeling: A Handbook of Operational Risk is an excellent reference for risk management practitioners, quantitative analysts, financial engineers, and risk managers. The handbook is also useful for graduate-level courses on heavy tailed processes, advanced risk management, and actuarial science.
Edited by the people who were forerunners in creating the field, together with contributions from 34 leading international experts, this handbook provides the definitive reference on Blind Source Separation, giving a broad and comprehensive description of all the core principles and methods, numerical algorithms and major applications in the fields of telecommunications, biomedical engineering and audio, acoustic and speech processing. Going beyond a machine learning perspective, the book reflects recent results in signal processing and numerical analysis, and includes topics such as optimization criteria, mathematical tools, the design of numerical algorithms, convolutive mixtures, and time frequency approaches. This Handbook is an ideal reference for university researchers, R&D engineers and graduates wishing to learn the core principles, methods, algorithms, and applications of Blind Source Separation. - Covers the principles and major techniques and methods in one book - Edited by the pioneers in the field with contributions from 34 of the world's experts - Describes the main existing numerical algorithms and gives practical advice on their design - Covers the latest cutting edge topics: second order methods; algebraic identification of under-determined mixtures, time-frequency methods, Bayesian approaches, blind identification under non negativity approaches, semi-blind methods for communications - Shows the applications of the methods to key application areas such as telecommunications, biomedical engineering, speech, acoustic, audio and music processing, while also giving a general method for developing applications
Independent Component Analysis (ICA) has recently become an important tool for modelling and understanding empirical datasets. It is a method of separating out independent sources from linearly mixed data, and belongs to the class of general linear models. ICA provides a better decomposition than other well-known models such as principal component analysis. This self-contained book contains a structured series of edited papers by leading researchers in the field, including an extensive introduction to ICA. The major theoretical bases are reviewed from a modern perspective, current developments are surveyed and many case studies of applications are described in detail. The latter include biomedical examples, signal and image denoising and mobile communications. ICA is discussed in the framework of general linear models, but also in comparison with other paradigms such as neural network and graphical modelling methods. The book is ideal for researchers and graduate students in the field.
Unsupervised Signal Processing: Channel Equalization and Source Separation provides a unified, systematic, and synthetic presentation of the theory of unsupervised signal processing. Always maintaining the focus on a signal processing-oriented approach, this book describes how the subject has evolved and assumed a wider scope that covers several topics, from well-established blind equalization and source separation methods to novel approaches based on machine learning and bio-inspired algorithms. From the foundations of statistical and adaptive signal processing, the authors explore and elaborate on emerging tools, such as machine learning-based solutions and bio-inspired methods. With a fresh take on this exciting area of study, this book: Provides a solid background on the statistical characterization of signals and systems and on linear filtering theory Emphasizes the link between supervised and unsupervised processing from the perspective of linear prediction and constrained filtering theory Addresses key issues concerning equilibrium solutions and equivalence relationships in the context of unsupervised equalization criteria Provides a systematic presentation of source separation and independent component analysis Discusses some instigating connections between the filtering problem and computational intelligence approaches. Building on more than a decade of the authors’ work at DSPCom laboratory, this book applies a fresh conceptual treatment and mathematical formalism to important existing topics. The result is perhaps the first unified presentation of unsupervised signal processing techniques—one that addresses areas including digital filters, adaptive methods, and statistical signal processing. With its remarkable synthesis of the field, this book provides a new vision to stimulate progress and contribute to the advent of more useful, efficient, and friendly intelligent systems.