Download Free Proceedings Of The 9th Patras Workshop On Axions Wimps And Wisps Book in PDF and EPUB Free Download. You can read online Proceedings Of The 9th Patras Workshop On Axions Wimps And Wisps and write the review.

The subject of this work is the design, implementation and first results of the "CERN Resonant WISP Search" (CROWS), which probes the existence of Axion Like Particles and Hidden Sector Photons (HSPs) using microwave techniques. By exploiting low loss cavity resonators, multiple layers of electromagnetic shielding and a micro-Hz bandwidth detection scheme, new exclusion limits could be set. For HSPs, sensitivity was improved by a factor of 7 compared to previous laboratory experiments.
Axions are peculiar hypothetical particles that could both solve the CP problem of quantum chromodynamics and at the same time account for the dark matter of the universe. Based on a series of lectures by world experts in this field held at CERN (Geneva), this volume provides a pedagogical introduction to the theory, cosmology and astrophysics of these fascinating particles and gives an up-to-date account of the status and prospect of ongoing and planned experimental searches.
This book focuses on one mechanism in black hole physics which has proven to be universal, multifaceted and with a rich phenomenology: rotational superradiance. This is an energy extraction process, whereby black holes can deposit their rotational energy in their surroundings, leading to Penrose processes, black-hole bombs, and even Hawking radiation. Black holes are key players in star formation mechanisms and as engines to some of the most violent events in our universe. Their simplicity and compactness make them perfect laboratories, ideally suited to probe new fields or modifications to the theory of gravity. Thus, black holes can also be used to probe some of the most important open problems in physics, including the nature of dark matter or the strong CP problem in particle physics. This monograph is directed to researchers and graduate students and provides a unified view of the subject, covering the theoretical machinery, experimental efforts in the laboratory, and astrophysics searches. It is focused on recent developments and works out a number of novel examples and applications, ranging from fundamental physics to astrophysics. Non-specialists with a scientific background should also find this text a valuable resource for understanding the critical issues of contemporary research in black-hole physics. This second edition stresses the role of ergoregions in superradiance, and completes its catalogue of energy-extraction processes. It presents a unified description of instabilities of spinning black holes in the presence of massive fields. Finally, it covers the first experimental observation of superradiance, and reviews the state-of-the-art in the searches for new light fields in the universe using superradiance as a mechanism.
For almost two decades, Sidney Coleman has been giving review lectures on frontier topics in theoretical high-energy physics at the International School of Subnuclear Physics held each year at Erice, Sicily. This volume is a collection of some of the best of these lectures. To this day they have few rivals for clarity of exposition and depth of insight. Although very popular when first published, many of the lectures have been difficult to obtain recently. Graduate students and professionals in high-energy physics will welcome this collection by a master of the field.
An overview of the optical effects in solids, this book addresses the physics of materials and their response to electromagnatic radiation--back cover.
Radiative Processes in Astrophysics: This clear, straightforward, and fundamental introduction is designed to present-from a physicist's point of view-radiation processes and their applications to astrophysical phenomena and space science. It covers such topics as radiative transfer theory, relativistic covariance and kinematics, bremsstrahlung radiation, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms. Discussion begins with first principles, physically motivating and deriving all results rather than merely presenting finished formulae. However, a reasonably good physics background (introductory quantum mechanics, intermediate electromagnetic theory, special relativity, and some statistical mechanics) is required. Much of this prerequisite material is provided by brief reviews, making the book a self-contained reference for workers in the field as well as the ideal text for senior or first-year graduate students of astronomy, astrophysics, and related physics courses. Radiative Processes in Astrophysics also contains about 75 problems, with solutions, illustrating applications of the material and methods for calculating results. This important and integral section emphasizes physical intuition by presenting important results that are used throughout the main text; it is here that most of the practical astrophysical applications become apparent.
This volume brings the reader up to date on transport phenomena, including electrical and thermal conductivity and infrared properties. In addition, electron tunneling and the characteristics and applications of films are discussed; the preparation of the necessary samples has proceeded, and a sizeable body of reproducible data has become available. Pressure effects are also presented; considerable progress has been made in relating them to the crystallographic and electronic structure of high temperature superconductors. The preparation and characterization of bulk samples is also reviewed.
Much of what we know about neutrinos is revealed by astronomical observations, and the same applies to the axion, a conjectured new particle that is a favored candidate for the main component of the dark matter of the universe.
This book introduces the reader to the basic concepts of the generation and manipulation of synchrotron light, its interaction with matter, and the application of synchrotron light in the “classical” techniques, while including some of the most modern technological developments. As much as possible, complicated mathematical derivations and formulas are avoided. A more heuristic approach is adopted, whereby the general physical reasoning behind the equations is highlighted. Key features: A general introduction to synchrotron radiation and experimental techniques using synchrotron radiation Contains many detailed “worked examples” from the literature Of interest for a broad audience - synchrotrons are possibly one of the best examples of multidisciplinary research Four-colour presentation throughout
The existence of an axion is doubly motivated: it solves a fundamental problem of the Standard Model of elementary particles and it is a leading dark matter candidate. The axion was postulated in 1977, shortly after the Standard Model became widely accepted, to explain why the strong interactions are parity invariant. In 1983, it was shown that axions are abundantly produced in the early universe and would appear as dark matter today. Thus, the existence of an axion has interesting implications for cosmology, astrophysics and particle physics. Searches for other related hypothetical elementary particles such as axion-like particles, paraphotons and chameleons, are also reviewed.