Download Free Proceedings Of A Razmadze Mathematical Institute Book in PDF and EPUB Free Download. You can read online Proceedings Of A Razmadze Mathematical Institute and write the review.

The volume contains 46 papers presented at the Seventh Symposium in Tokyo. They represent the most recent research activity in Japan, Russia, Ukraina, Lithuania, Georgia and some other countries on diverse topics of the traditionally strong fields in these countries — probability theory and mathematical statistics.
This monograph gives the reader an up-to-date account of the fine properties of real-valued functions and measures. The unifying theme of the book is the notion of nonmeasurability, from which one gets a full understanding of the structure of the subsets of the real line and the maps between them. The material covered in this book will be of interest to a wide audience of mathematicians, particularly to those working in the realm of real analysis, general topology, and probability theory. Set theorists interested in the foundations of real analysis will find a detailed discussion about the relationship between certain properties of the real numbers and the ZFC axioms, Martin's axiom, and the continuum hypothesis.
This volume is dedicated to the eminent Georgian mathematician Roland Duduchava on the occasion of his 70th birthday. It presents recent results on Toeplitz, Wiener-Hopf, and pseudodifferential operators, boundary value problems, operator theory, approximation theory, and reflects the broad spectrum of Roland Duduchava's research. The book is addressed to a wide audience of pure and applied mathematicians.
No detailed description available for "Proceedings of the Bakuriani Colloquium in Honour of Yu.V. Prohorov, Bakuriani, Georgia, USSR, 24 February-4 March, 1990".
This book highlights various topics on measure theory and vividly demonstrates that the different questions of this theory are closely connected with the central measure extension problem. Several important aspects of the measure extension problem are considered separately: set-theoretical, topological and algebraic. Also, various combinations (e.g., algebraic-topological) of these aspects are discussed by stressing their specific features. Several new methods are presented for solving the above mentioned problem in concrete situations. In particular, the following new results are obtained: the measure extension problem is completely solved for invariant or quasi-invariant measures on solvable uncountable groups; non-separable extensions of invariant measures are constructed by using their ergodic components; absolutely non-measurable additive functionals are constructed for certain classes of measures; the structure of algebraic sums of measure zero sets is investigated. The material presented in this book is essentially self-contained and is oriented towards a wide audience of mathematicians (including postgraduate students). New results and facts given in the book are based on (or closely connected with) traditional topics of set theory, measure theory and general topology such as: infinite combinatorics, Martin's Axiom and the Continuum Hypothesis, Luzin and Sierpinski sets, universal measure zero sets, theorems on the existence of measurable selectors, regularity properties of Borel measures on metric spaces, and so on. Essential information on these topics is also included in the text (primarily, in the form of Appendixes or Exercises), which enables potential readers to understand the proofs and follow the constructions in full details. This not only allows the book to be used as a monograph but also as a course of lectures for students whose interests lie in set theory, real analysis, measure theory and general topology.
This volume showcases selected recent work presented at the 13th Regional Conference on Mathematical Physics held in Antalya, Turkey in 2010. The conference was dedicated to the memory of Faheem Hussain, one of the initiators of the Regional Conference series, and one of the organizers of the 12th Regional Conference. The “region”, originally comprised of Turkey, Iran and Pakistan, extends now to Bangladesh and Central Asia. However, the contributing researchers are not only limited to this region.Prominent contributors include B Ahmedov (Tashkent), F Ardalan (Tehran), N Dadhich (Pune), D A Demir (İzmir), R L Hall (Montreal), M Hortaçsu (İstanbul), M Koca (Oman), C S Lim (Kobe), F Mahomed (Johannesburg), A Qadir (Rawalpindi), M A Rashid (Rawalpindi), M Sakamoto (Kobe), M Sharif (Lahore), F Toppan (Rio), N Ünal (Antalya), amongst others. They sample a number of topics in the formal aspects of mathematical physics, general relativity and cosmology, quantum gravity, quantum field theory, and even applied physics.
Let 8 be a Riemann surface of analytically finite type (9, n) with 29 2+n> O. Take two pointsP1, P2 E 8, and set 8,1>2= 8 \ {P1' P2}. Let PI Homeo+(8;P1,P2) be the group of all orientation preserving homeomor phismsw: 8 -+ 8 fixingP1, P2 and isotopic to the identity on 8. Denote byHomeot(8;Pb P2) the set of all elements ofHomeo+(8;P1, P2) iso topic to the identity on 8,P2' ThenHomeot(8;P1,P2) is a normal sub pl group ofHomeo+(8;P1,P2). We setIsot(8;P1,P2) =Homeo+(8;P1,P2)/ Homeot(8;p1, P2). The purpose of this note is to announce a result on the Nielsen Thurston-Bers type classification of an element [w] ofIsot+(8;P1,P2). We give a necessary and sufficient condition for thetypeto be hyperbolic. The condition is described in terms of properties of the pure braid [b] w induced by [w]. Proofs will appear elsewhere. The problem considered in this note and the form ofthe solution are suggested by Kra's beautiful theorem in [6], where he treats self-maps of Riemann surfaces with one specified point. 2 TheclassificationduetoBers Let us recall the classification of elements of the mapping class group due to Bers (see Bers [1]). LetT(R) be the Teichmiiller space of a Riemann surfaceR, andMod(R) be the Teichmtiller modular group of R. Note that an orientation preserving homeomorphism w: R -+ R induces canonically an element (w) EMod(R). Denote by & .r(R)(·, .) the Teichmiiller distance onT(R). For an elementXEMod(R), we define a(x)= inf & .r(R)(r, x(r)).