Download Free Proceedings Fourth Ieee International Conference On Automatic Face And Gesture Recognition March 28 30 2000 Grenoble France Book in PDF and EPUB Free Download. You can read online Proceedings Fourth Ieee International Conference On Automatic Face And Gesture Recognition March 28 30 2000 Grenoble France and write the review.

Annotation The proceedings from the May 2002 conference in Washington, D.C. contain 68 papers and posters on topics like: face analysis, detection and recognition, face recognition, evaluation, tracking and motion, and gesture. An abstract is provided for each. Black and white images support the analysis; diagrams and charts represent the data. Only authors are listed in the index. A CD is included. Annotation copyrighted by Book News, Inc., Portland, OR.
This book focuses on light invariant bare hand gesture recognition while there is no restriction on the types of gestures. Observations and results have confirmed that this research work can be used to remotely control a robotic hand using hand gestures. The system developed here is also able to recognize hand gestures in different lighting conditions. The pre-processing is performed by developing an image-cropping algorithm that ensures only the area of interest is included in the segmented image. The segmented image is compared with a predefined gesture set which must be installed in the recognition system. These images are stored and feature vectors are extracted from them. These feature vectors are subsequently presented using an orientation histogram, which provides a view of the edges in the form of frequency. Thereby, if the same gesture is shown twice in different lighting intensities, both repetitions will map to the same gesture in the stored data. The mapping of the segmented image's orientation histogram is firstly done using the Euclidian distance method. Secondly, the supervised neural network is trained for the same, producing better recognition results. An approach to controlling electro-mechanical robotic hands using dynamic hand gestures is also presented using a robot simulator. Such robotic hands have applications in commercial, military or emergency operations where human life cannot be risked. For such applications, an artificial robotic hand is required to perform real-time operations. This robotic hand should be able to move its fingers in the same manner as a human hand. For this purpose, hand geometry parameters are obtained using a webcam and also using KINECT. The parameter detection is direction invariant in both methods. Once the hand parameters are obtained, the fingers’ angle information is obtained by performing a geometrical analysis. An artificial neural network is also implemented to calculate the angles. These two methods can be used with only one hand, either right or left. A separate method that is applicable to both hands simultaneously is also developed and fingers angles are calculated. The contents of this book will be useful for researchers and professional engineers working on robotic arm/hand systems.
Foundations of Computational Intelligence Volume 1: Learning and Approximation: Theoretical Foundations and Applications Learning methods and approximation algorithms are fundamental tools that deal with computationally hard problems and problems in which the input is gradually disclosed over time. Both kinds of problems have a large number of applications arising from a variety of fields, such as algorithmic game theory, approximation classes, coloring and partitioning, competitive analysis, computational finance, cuts and connectivity, inapproximability results, mechanism design, network design, packing and covering, paradigms for design and analysis of approxi- tion and online algorithms, randomization techniques, real-world applications, scheduling problems and so on. The past years have witnessed a large number of interesting applications using various techniques of Computational Intelligence such as rough sets, connectionist learning; fuzzy logic; evolutionary computing; artificial immune systems; swarm intelligence; reinforcement learning, intelligent multimedia processing etc. . In spite of numerous successful applications of C- putational Intelligence in business and industry, it is sometimes difficult to explain the performance of these techniques and algorithms from a theoretical perspective. Therefore, we encouraged authors to present original ideas dealing with the inc- poration of different mechanisms of Computational Intelligent dealing with Lea- ing and Approximation algorithms and underlying processes. This edited volume comprises 15 chapters, including an overview chapter, which provides an up-to-date and state-of-the art research on the application of Computational Intelligence for learning and approximation.
July 17th – August 11th, Dubrovnik, Croatia eNTERFACE '06, the second in the series of eNTERFACE workshops, was hosted by the Faculty of Electrical Engineering and Computing, University of Zagreb. A group of 63 international students from all over the...
3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application scenarios expected as the discipline develops further. The book covers face acquisition through 3D scanners and 3D face pre-processing, before examining the three main approaches for 3D facial surface analysis and recognition: facial curves; facial surface features; and 3D morphable models. Whilst the focus of these chapters is fundamentals and methodologies, the algorithms provided are tested on facial biometric data, thereby continually showing how the methods can be applied. Key features: • Explores the underlying mathematics and will apply these mathematical techniques to 3D face analysis and recognition • Provides coverage of a wide range of applications including biometrics, forensic applications, facial expression analysis, and model fitting to 2D images • Contains numerous exercises and algorithms throughout the book
In recent years, the field of Universal Access has made significant progress in consolidating theoretical approaches, scientific methods and technologies, as well as in exploring new application domains. Increasingly, professionals in this rapidly maturing area require a comprehensive and multidisciplinary resource that addresses current principles
Cross disciplinary biometric systems help boost the performance of the conventional systems. Not only is the recognition accuracy significantly improved, but also the robustness of the systems is greatly enhanced in the challenging environments, such as varying illumination conditions. By leveraging the cross disciplinary technologies, face recognition systems, fingerprint recognition systems, iris recognition systems, as well as image search systems all benefit in terms of recognition performance. Take face recognition for an example, which is not only the most natural way human beings recognize the identity of each other, but also the least privacy-intrusive means because people show their face publicly every day. Face recognition systems display superb performance when they capitalize on the innovative ideas across color science, mathematics, and computer science (e.g., pattern recognition, machine learning, and image processing). The novel ideas lead to the development of new color models and effective color features in color science; innovative features from wavelets and statistics, and new kernel methods and novel kernel models in mathematics; new discriminant analysis frameworks, novel similarity measures, and new image analysis methods, such as fusing multiple image features from frequency domain, spatial domain, and color domain in computer science; as well as system design, new strategies for system integration, and different fusion strategies, such as the feature level fusion, decision level fusion, and new fusion strategies with novel similarity measures.
This book, authored by an array of internationally recognised researchers, is of direct relevance to all those involved in Academia and Industry wanting to obtain insights into the topics at the forefront of the revolution in Artificial Intelligence and Cognitive Science.
This book constitutes the refereed proceedings of the Third International Conference on Computer Vision/Computer Graphics collaboration techniques involving image analysis/synthesis approaches MIRAGE 2007, held in Rocquencourt, France, in March 2007. The 55 revised full cover foundational, methodological, and application issues.
This volume is the first part of the two-volume proceedings of the International C- ference on Artificial Neural Networks (ICANN 2005), held on September 11–15, 2005 in Warsaw, Poland, with several accompanying workshops held on September 15, 2005 at the Nicolaus Copernicus University, Toru , Poland. The ICANN conference is an annual meeting organized by the European Neural Network Society in cooperation with the International Neural Network Society, the Japanese Neural Network Society, and the IEEE Computational Intelligence Society. It is the premier European event covering all topics concerned with neural networks and related areas. The ICANN series of conferences was initiated in 1991 and soon became the major European gathering for experts in those fields. In 2005 the ICANN conference was organized by the Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland, and the Nicolaus Copernicus Univ- sity, Toru , Poland. From over 600 papers submitted to the regular sessions and some 10 special c- ference sessions, the International Program Committee selected – after a thorough peer-review process – about 270 papers for publication. The large number of papers accepted is certainly a proof of the vitality and attractiveness of the field of artificial neural networks, but it also shows a strong interest in the ICANN conferences.