Download Free Print Proceedings Of The Asme Bath 2019 Symposium On Fluid Power And Motion Control Fpmc2019 Book in PDF and EPUB Free Download. You can read online Print Proceedings Of The Asme Bath 2019 Symposium On Fluid Power And Motion Control Fpmc2019 and write the review.

More and more vehicles are being electrified. Mobile working machines and heavy trucks are not excluded, and these machines are often hydraulically intense. Electrification entails new requirements for the hydraulic system and its components, and these requirements must be taken into consideration. Hydraulic systems have looked similar for a long time, but now there is an opportunity to advance. Many things change when a diesel engine is replaced with an electric motor. For example, variable-speed control becomes more relevant, electric regeneration becomes possible, and the use of multiple prime movers becomes an attractive alternative. The noise from the hydraulic system will also be more noticeable when the diesel engine is gone. Furthermore, the introduction of batteries to the system makes the energy more valuable, since batteries are heavy and costly compared to a diesel tank. Therefore, it is commercially viable to invest in the hydraulic system. This thesis revolves around the heart of the hydraulic system, that also is the root of all evil. That is the pump. Traditionally, a pump has had either a fixed displacement or a continuously variable displacement. Here, the focus is on something in between, namely a pump with discrete displacement. The idea of discrete displacement is far from unique, but has not been investigated in detail in combination with variable speed before. In this thesis, a novel design for a quiet pump with discrete displacement is presented and analysed. The results show that discrete displacement is relevant from an energy perspective for machines working extensively at high pressure levels and with low flow rates, and that a few discrete values are enough to make a significant difference. However, for other cycles, the possible energy gains are very limited, but the discrete displacement can be a valuable feature if downsizing the electric machine is of interest.
Drawn from presentations at a recent National Science Foundation Summer Institute on Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, Micro- and Nanoscale Phenomena in Tribology explores the convergence of the multiple science and engineering disciplines involved in tribology and the connection from the macro to nano world. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study. After discussing the evolution of tribology in the micro and nano world, the book describes contact conditions spanning between macroscale and nanoscale contacts. It presents an overview of fundamental continuum treatments of interfacial contact and lubrication under a wide range of conditions, including novel advances in contact simulation. It also gives a thorough account of the nature of surface energies and forces in nanostructures as well as adhesion in dry and wet environments. The book then explains how to perform friction measurements at the nanoscale and interpret friction data before demonstrating how micro- and nanotextured surfaces affect adhesion, friction, and wetting. The final chapters emphasize the importance of surface chemistry and molecular dynamics simulation in tribology. With numerous examples and figures throughout, this volume presents a thorough account of important advancements in tribology that offer insight into micro- and nanoscale phenomena. By enabling a better understanding of fundamental micro- and nanoscale interactions, the book helps readers effectively design and fabricate durable tribological components for various engineering and biological systems.
This book reports on cutting-edge research and technical achievements in the field of hydraulic drives. The chapters, selected from contributions presented at the International Scientific-Technical Conference on Hydraulic and Pneumatic Drives and Controls, NSHP 2020, held on October 21-23, 2020, in Trzebieszowice, Poland, cover a wide range of topics such as theoretical advances in fluid technology, work machines in mining, construction, marine and manufacturing industry, and practical issues relating to the application and operation of hydraulic drives. Further topics include: safety and environmental issues associated with the use of machines with hydraulic drive, and new materials in design of hydraulic components. A special emphasis is given to new solutions for hydraulic components and systems as well as to the identification of phenomena and processes occurring during the operation of hydraulic and pneumatic systems.
HYDRAULIC FLUID POWER LEARN MORE ABOUT HYDRAULIC TECHNOLOGY IN HYDRAULIC SYSTEMS DESIGN WITH THIS COMPREHENSIVE RESOURCE Hydraulic Fluid Power provides readers with an original approach to hydraulic technology education that focuses on the design of complete hydraulic systems. Accomplished authors and researchers Andrea Vacca and Germano Franzoni begin by describing the foundational principles of hydraulics and the basic physical components of hydraulics systems. They go on to walk readers through the most practical and useful system concepts for controlling hydraulic functions in modern, state-of-the-art systems. Written in an approachable and accessible style, the book’s concepts are classified, analyzed, presented, and compared on a system level. The book also provides readers with the basic and advanced tools required to understand how hydraulic circuit design affects the operation of the equipment in which it’s found, focusing on the energy performance and control features of each design architecture. Readers will also learn how to choose the best design solution for any application. Readers of Hydraulic Fluid Power will benefit from: Approaching hydraulic fluid power concepts from an “outside-in” perspective, emphasizing a problem-solving orientation Abundant numerical examples and end-of-chapter problems designed to aid the reader in learning and retaining the material A balance between academic and practical content derived from the authors’ experience in both academia and industry Strong coverage of the fundamentals of hydraulic systems, including the equations and properties of hydraulic fluids Hydraulic Fluid Power is perfect for undergraduate and graduate students of mechanical, agricultural, and aerospace engineering, as well as engineers designing hydraulic components, mobile machineries, or industrial systems.
This up-to-date book details the basic concepts of many recent developments of nonlinear identification and nonlinear control, and their application to hydraulic servo-systems. It is very application-oriented and provides the reader with detailed working procedures and hints for implementation routines and software tools.
Seals and Sealing Handbook, Sixth Edition provides comprehensive coverage of sealing technology, bringing together information on all aspects of this area to enable you to make the right sealing choice. This includes detailed coverage on the seals applicable to static, rotary and reciprocating applications, the best materials to use in your sealing systems, and the legislature and regulations that may impact your sealing choices.Updated in line with current trends this updated reference provides the theory necessary for you to select the most appropriate seals for the job and with its 'Failure Guide', the factors to consider should anything go wrong. Building on the practical, stepped approach of its predecessor, Seals and Sealing Handbook, 6th Edition remains an essential reference for any engineer or designer who uses seals in their work. - A comprehensive reference covering a broad range of seal types for all situations, to ensure that you are able to select the most appropriate seal for any given task - Includes supporting case studies and a unique 'Failure Guide' to help you troubleshoot if things go wrong - New edition includes the most up-to-date information on sealing technology, making it an essential reference for anyone who uses seals in their work
Modeling of Chemical Wear is a one-stop resource for students, researchers and professionals seeking quick and effective tribological evaluations of environmentally friendly and energy efficient products.This book considers optimizing additive combinations by proper methodology, bridging the gap between theory and practice. It defines effective approaches to evaluate antiwear chemical additives commonly used in industry, enhancing the mapping ability of their performance to reduce the extent of full scale evaluations. - Provides full coverage of tribology in four concise chapters, including lubricants and additives and up-and-coming nano-level tribology - Offers effective empirical modelling of chemical wear, along with computer programs relevant to industry standards to help you improve your test methods - Outlines effective methodology for optimization of additive packages, relevant to the present search for eco-friendly combinations
Tribology of Metal Cutting deals with the emerging field of studies known as Metal Cutting Tribology. Tribology is defined as the science and technology of interactive surfaces moving relative each other. It concentrates on contact physics and mechanics of moving interfaces that generally involve energy dissipation. This book summarizes the available information on metal cutting tribology with a critical review of work done in the past. The book covers the complete system of metal cutting testing. In particular, it presents, explains and exemplifies a breakthrough concept of the physical resource of the cutting tool. It also describes the cutting system physical efficiency and its practical assessment via analysis of the energy partition in the cutting system. Specialists in the field of metal cutting will find information on how to apply the major principles of metal cutting tribology, or, in other words, how to make the metal cutting tribology to be useful at various levels of applications. The book discusses other novel concepts and principles in the tribology of metal cutting such as the energy partition in the cutting system; versatile metrics of cutting tool wear; optimal cutting temperature and its use in the optimization of the cutting process; the physical concept of cutting tool resource; and embrittlement action. This book is intended for a broad range of readers such as metal cutting tool, cutting insert, and process designers; manufacturing engineers involved in continuous process improvement; research workers who are active or intend to become active in the field; and senior undergraduate and graduate students of manufacturing. · Introduces the cutting system physical efficiency and its practical assessment via analysis of the energy partition in the cutting system.· Presents, explains and exemplifies a breakthrough concept of the physical resource of the cutting tool.· Covers the complete system of metal cutting testing.
The GFPS 2018 Symposium presents a forum for PhD students to exchange ideas and research results in the area of fluid power systems design, energy transmission and motion control in various industrial applications It provides the constructive feedback from the scientific and industrial community The biennial Symposium is regularly conducted by the world fluid power community GFPS (former FPNI Fluid power Net International) since 2000 in various countries