Download Free Principles Of Thermodynamics And Statistical Mechanics Book in PDF and EPUB Free Download. You can read online Principles Of Thermodynamics And Statistical Mechanics and write the review.

A thorough exploration of the universal principles of thermodynamics and statistical mechanics, this volume takes an applications-oriented approach to a multitude of situations arising in physics and engineering. 1987 edition.
This is the definitive treatise on the fundamentals of statistical mechanics. A concise exposition of classical statistical mechanics is followed by a thorough elucidation of quantum statistical mechanics: postulates, theorems, statistical ensembles, changes in quantum mechanical systems with time, and more. The final two chapters discuss applications of statistical mechanics to thermodynamic behavior. 1930 edition.
Well respected and widely used, this volume presents problems and full solutions related to a wide range of topics in thermodynamics, statistical physics, and statistical mechanics. The text is intended for instructors, undergraduates, and graduate students of mathematics, physics, chemistry, and engineering. Twenty-eight chapters, each prepared by an expert, proceed from simpler to more difficult subjects. Similarly, the early chapters are easier than the later ones, making the book ideal for independent study. Subjects begin with the laws of thermodynamics and statistical theory of information and of ensembles, advancing to the ideal classical gases of polyatomic molecules, non-electrolyte liquids and solutions, and surfaces. Subsequent chapters explore imperfect classical and quantum gas, phase transitions, cooperative phenomena, Green function methods, the plasma, transport in gases and metals, Nyquist's theorem and its generalizations, stochastic methods, and many other topics.
This text presents statistical mechanics and thermodynamics as a theoretically integrated field of study. It stresses deep coverage of fundamentals, providing a natural foundation for advanced topics. The large problem sets (with solutions for teachers) include many computational problems to advance student understanding.
From the reviews: "This book excels by its variety of modern examples in solid state physics, magnetism, elementary particle physics [...] I can recommend it strongly as a valuable source, especially to those who are teaching basic statistical physics at our universities." Physicalia
This textbook facilitates students’ ability to apply fundamental principles and concepts in classical thermodynamics to solve challenging problems relevant to industry and everyday life. It also introduces the reader to the fundamentals of statistical mechanics, including understanding how the microscopic properties of atoms and molecules, and their associated intermolecular interactions, can be accounted for to calculate various average properties of macroscopic systems. The author emphasizes application of the fundamental principles outlined above to the calculation of a variety of thermodynamic properties, to the estimation of conversion efficiencies for work production by heat interactions, and to the solution of practical thermodynamic problems related to the behavior of non-ideal pure fluids and fluid mixtures, including phase equilibria and chemical reaction equilibria. The book contains detailed solutions to many challenging sample problems in classical thermodynamics and statistical mechanics that will help the reader crystallize the material taught. Class-tested and perfected over 30 years of use by nine-time Best Teaching Award recipient Professor Daniel Blankschtein of the Department of Chemical Engineering at MIT, the book is ideal for students of Chemical and Mechanical Engineering, Chemistry, and Materials Science, who will benefit greatly from in-depth discussions and pedagogical explanations of key concepts. Distills critical concepts, methods, and applications from leading full-length textbooks, along with the author’s own deep understanding of the material taught, into a concise yet rigorous graduate and advanced undergraduate text; Enriches the standard curriculum with succinct, problem-based learning strategies derived from the content of 50 lectures given over the years in the Department of Chemical Engineering at MIT; Reinforces concepts covered with detailed solutions to illuminating and challenging homework problems.
Statistical thermodynamics and the related domains of statistical physics and quantum mechanics are very important in many fields of research, including plasmas, rarefied gas dynamics, nuclear systems, lasers, semiconductors, superconductivity, ortho- and para-hydrogen, liquid helium, and so on. Statistical Thermodynamics: Understanding the Properties of Macroscopic Systems provides a detailed overview of how to apply statistical principles to obtain the physical and thermodynamic properties of macroscopic systems. Intended for physics, chemistry, and other science students at the graduate level, the book starts with fundamental principles of statistical physics, before diving into thermodynamics. Going further than many advanced textbooks, it includes Bose-Einstein, Fermi-Dirac statistics, and Lattice dynamics as well as applications in polaron theory, electronic gas in a magnetic field, thermodynamics of dielectrics, and magnetic materials in a magnetic field. The book concludes with an examination of statistical thermodynamics using functional integration and Feynman path integrals, and includes a wide range of problems with solutions that explain the theory.
Learn classical thermodynamics alongside statistical mechanics and how macroscopic and microscopic ideas interweave with this fresh approach to the subjects.
Four-part treatment covers principles of quantum statistical mechanics, systems composed of independent molecules or other independent subsystems, and systems of interacting molecules, concluding with a consideration of quantum statistics.