Download Free Principles Of Space Time Matter Cosmology Particles And Waves In Five Dimensions Book in PDF and EPUB Free Download. You can read online Principles Of Space Time Matter Cosmology Particles And Waves In Five Dimensions and write the review.

'For those interested, the book is a good and well-written overview of the work of Wesson and his collaborators. For those with a general interest in extensions of standard physics, accessibility is strongly dependent on the reader’s technical background, though the good structure of the book and copious references (including many to work by more-mainstream physicists on related topics) make that possible for those willing to invest some time.'The Observatory MagazineThis book is a summing up of the prospects for unification between relativity and particle physics based on the extension of Einstein's theory of General Relativity to five dimensions. This subject was first established by Paul Wesson in his previous best-seller, Space-Time-Matter, and discussed from a different perspective in Five-Dimensional Physics, both published by World Scientific in 1999 and 2006 respectively. This third book brings the field up to date and details many new developments and connections to particle theory and wave mechanics in particular. It was in largely finished form at the time of Paul Wesson's untimely death in 2015, and has been completed and expanded by his former student and longtime collaborator, James Overduin.
Einstein endorsed the view of Kaluza that gravity could be combined with electromagnetism if the dimensionality of the world is extended from 4 to 5. Klein applied this idea to quantum theory, laying a basis for the various modern versions of string theory. Recently, work by a group of researchers has resulted in a coherent formulation of 5D relativity, in which matter in 4D is induced by geometry in 5D. This theory is based on an unrestricted group of 5D coordinate transformations that leads to new solutions and agreement with the classical tests of relativity. This book collects together the main technical results on 5D relativity, and shows how far we can realize Einstein''s vision of physics as geometry.
The amount of new information is constantly increasing, faster than our ability to fully interpret and utilize it to improve human experiences. Addressing this asymmetry requires novel and revolutionary scientific methods and effective human and artificial intelligence interfaces. By lifting the concept of time from a positive real number to a 2D complex time (kime), this book uncovers a connection between artificial intelligence (AI), data science, and quantum mechanics. It proposes a new mathematical foundation for data science based on raising the 4D spacetime to a higher dimension where longitudinal data (e.g., time-series) are represented as manifolds (e.g., kime-surfaces). This new framework enables the development of innovative data science analytical methods for model-based and model-free scientific inference, derived computed phenotyping, and statistical forecasting. The book provides a transdisciplinary bridge and a pragmatic mechanism to translate quantum mechanical principles, such as particles and wavefunctions, into data science concepts, such as datum and inference-functions. It includes many open mathematical problems that still need to be solved, technological challenges that need to be tackled, and computational statistics algorithms that have to be fully developed and validated. Spacekime analytics provide mechanisms to effectively handle, process, and interpret large, heterogeneous, and continuously-tracked digital information from multiple sources. The authors propose computational methods, probability model-based techniques, and analytical strategies to estimate, approximate, or simulate the complex time phases (kime directions). This allows transforming time-varying data, such as time-series observations, into higher-dimensional manifolds representing complex-valued and kime-indexed surfaces (kime-surfaces). The book includes many illustrations of model-based and model-free spacekime analytic techniques applied to economic forecasting, identification of functional brain activation, and high-dimensional cohort phenotyping. Specific case-study examples include unsupervised clustering using the Michigan Consumer Sentiment Index (MCSI), model-based inference using functional magnetic resonance imaging (fMRI) data, and model-free inference using the UK Biobank data archive. The material includes mathematical, inferential, computational, and philosophical topics such as Heisenberg uncertainty principle and alternative approaches to large sample theory, where a few spacetime observations can be amplified by a series of derived, estimated, or simulated kime-phases. The authors extend Newton-Leibniz calculus of integration and differentiation to the spacekime manifold and discuss possible solutions to some of the "problems of time". The coverage also includes 5D spacekime formulations of classical 4D spacetime mathematical equations describing natural laws of physics, as well as, statistical articulation of spacekime analytics in a Bayesian inference framework. The steady increase of the volume and complexity of observed and recorded digital information drives the urgent need to develop novel data analytical strategies. Spacekime analytics represents one new data-analytic approach, which provides a mechanism to understand compound phenomena that are observed as multiplex longitudinal processes and computationally tracked by proxy measures. This book may be of interest to academic scholars, graduate students, postdoctoral fellows, artificial intelligence and machine learning engineers, biostatisticians, econometricians, and data analysts. Some of the material may also resonate with philosophers, futurists, astrophysicists, space industry technicians, biomedical researchers, health practitioners, and the general public.
Consciousness Mattering presents a contemporary Buddhist theory in which brains, bodies, environments, and cultures are relational infrastructures for human consciousness. Drawing on insights from meditation, neuroscience, physics, and evolutionary theory, it demonstrates that human consciousness is not something that occurs only in our heads and consists in the creative elaboration of relations among sensed and sensing presences, and more fundamentally between matter and what matters. Hershock argues that without consciousness there would only be either unordered sameness or nothing at all. Evolution is consciousness mattering. Shedding new light on the co-emergence of subjective awareness and culture, the possibility of machine consciousness, the risks of algorithmic consciousness hacking, and the potentials of intentionally altered states of consciousness, Hershock invites us to consider how freely, wisely, and compassionately consciousness matters.
Inflationary cosmology has been developed over the last twenty years to remedy serious shortcomings in the standard hot big bang model of the universe. This textbook, first published in 2005, explains the basis of modern cosmology and shows where the theoretical results come from. The book is divided into two parts; the first deals with the homogeneous and isotropic model of the Universe, the second part discusses how inhomogeneities can explain its structure. Established material such as the inflation and quantum cosmological perturbation are presented in great detail, however the reader is brought to the frontiers of current cosmological research by the discussion of more speculative ideas. An ideal textbook for both advanced students of physics and astrophysics, all of the necessary background material is included in every chapter and no prior knowledge of general relativity and quantum field theory is assumed.
NATIONAL BESTSELLER • From one of the world’s leading physicists and author of the Pulitzer Prize finalist The Elegant Universe, comes “an astonishing ride” through the universe (The New York Times) that makes us look at reality in a completely different way. Space and time form the very fabric of the cosmos. Yet they remain among the most mysterious of concepts. Is space an entity? Why does time have a direction? Could the universe exist without space and time? Can we travel to the past? Greene has set himself a daunting task: to explain non-intuitive, mathematical concepts like String Theory, the Heisenberg Uncertainty Principle, and Inflationary Cosmology with analogies drawn from common experience. From Newton’s unchanging realm in which space and time are absolute, to Einstein’s fluid conception of spacetime, to quantum mechanics’ entangled arena where vastly distant objects can instantaneously coordinate their behavior, Greene takes us all, regardless of our scientific backgrounds, on an irresistible and revelatory journey to the new layers of reality that modern physics has discovered lying just beneath the surface of our everyday world.
Extra dimensions -- beyond space and time -- are the best methods for unifying gravity with particle physics. The basic extension is to five dimensions (5D), as in the induced-matter and membrane theory. This descriptive text gives an up-to-date account of the classical and quantum consequences of 5D physics. It includes topics that range from Einstein's original theory of relativity to modern views on matter. The book is mathematically precise and focuses on new ideas which appeal to readers. Examples of new ideas are: The big-bang universe, which is curved by matter in 4D, may be viewed as a smooth and empty world in 5D; the uncertainty of quantum interactions in spacetime may be regarded as the consequence of deterministic laws in higher dimensions. This book will interest people who think about the 'meaning of things'.
This work presents a series of dramatic discoveries never before made public. Starting from a collection of simple computer experiments---illustrated in the book by striking computer graphics---Wolfram shows how their unexpected results force a whole new way of looking at the operation of our universe. Wolfram uses his approach to tackle a remarkable array of fundamental problems in science: from the origin of the Second Law of thermodynamics, to the development of complexity in biology, the computational limitations of mathematics, the possibility of a truly fundamental theory of physics, and the interplay between free will and determinism.
Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.