Download Free Principles Of Performance And Reliability Modeling And Evaluation Book in PDF and EPUB Free Download. You can read online Principles Of Performance And Reliability Modeling And Evaluation and write the review.

This book presents the latest key research into the performance and reliability aspects of dependable fault-tolerant systems and features commentary on the fields studied by Prof. Kishor S. Trivedi during his distinguished career. Analyzing system evaluation as a fundamental tenet in the design of modern systems, this book uses performance and dependability as common measures and covers novel ideas, methods, algorithms, techniques, and tools for the in-depth study of the performance and reliability aspects of dependable fault-tolerant systems. It identifies the current challenges that designers and practitioners must face in order to ensure the reliability, availability, and performance of systems, with special focus on their dynamic behaviors and dependencies, and provides system researchers, performance analysts, and practitioners with the tools to address these challenges in their work. With contributions from Prof. Trivedi's former PhD students and collaborators, many of whom are internationally recognized experts, to honor him on the occasion of his 70th birthday, this book serves as a valuable resource for all engineering disciplines, including electrical, computer, civil, mechanical, and industrial engineering as well as production and manufacturing.
Reliability is one of the fundamental criteria in engineering systems. Design and maintenance serve to support it throughout the systems life. As such, maintenance acts in parallel to production and can have a great impact on the availability and capacity of production and the quality of the products. The authors describe current and innovative methods useful to industry and society.
Promotes better ways to diagnose, maintain, and improve existing systems. Existing reliability evaluation models are examined with respect to today's complicated engineering systems that have hundreds of thousands of integrated component designs.
This book covers ideas, methods, algorithms, and tools for the in-depth study of the performance and reliability of dependable fault-tolerant systems. The chapters identify the current challenges that designers and practitioners must confront to ensure the reliability, availability, and performance of systems, with special focus on their dynamic behaviors and dependencies. Topics include network calculus, workload and scheduling; simulation, sensitivity analysis and applications; queuing networks analysis; clouds, federations and big data; and tools. This collection of recent research exposes system researchers, performance analysts, and practitioners to a spectrum of issues so that they can address these challenges in their work.
Modern systems have become increasingly complex to design and build, while the demand for reliability and cost-effective enhancement continues. Robust international competition has further intensified the need for all designers, managers, practitioners, scientists, and engineers to ensure a level of reliability of their products and processes before release at the lowest cost. Developments in Reliability Engineering equips its audience with the necessary information to keep up with the latest original research and state-of-the-art advances in reliability engineering. The volume offers an excursus from historical theories and methods to the present-world practical utility of these concepts with worked-out examples. Guides readers through reliability topics from an historical perspective to new research results, advancements, and latest developments Draws on the authors’ experience of reliability analysis in a range of industries and disciplines, showing the need for reliability from the product design stage right through to aftercare Provides methods throughout, making this title a good source of actionable information
This proceedings book features papers presented at the International Conference on New Technologies, Development and Application, held at the Academy of Sciences and Arts of Bosnia and Herzegovina in Sarajevo on 25th–27th June 2020. It covers a wide range of future technologies and technical disciplines, including complex systems such as Industry 4.0; patents in Industry 4.0; robotics; mechatronics systems; automation; manufacturing; cyber-physical and autonomous systems; sensors; networks; control; energy and renewable energy sources; automotive and biological systems; vehicular networking and connected vehicles; effectiveness and logistics systems; smart grids; nonlinear systems; power; social and economic systems; education; and IoT. The book focuses on the Fourth Industrial Revolution “Industry 4.0,” in which implementation will improve many aspects of human life in all segments and lead to changes in business paradigms and production models. Further, new business methods are emerging, transforming production systems, transport, delivery, and consumption, which need to be monitored and implemented by every company involved in the global market.
This volume contains lecture notes of the 15th Reasoning Web Summer School (RW 2019), held in Bolzano, Italy, in September 2019. The research areas of Semantic Web, Linked Data, and Knowledge Graphs have recently received a lot of attention in academia and industry. Since its inception in 2001, the Semantic Web has aimed at enriching the existing Web with meta-data and processing methods, so as to provide Web-based systems with intelligent capabilities such as context awareness and decision support. The Semantic Web vision has been driving many community efforts which have invested a lot of resources in developing vocabularies and ontologies for annotating their resources semantically. Besides ontologies, rules have long been a central part of the Semantic Web framework and are available as one of its fundamental representation tools, with logic serving as a unifying foundation. Linked Data is a related research area which studies how one can make RDF data available on the Web and interconnect it with other data with the aim of increasing its value for everybody. Knowledge Graphs have been shown useful not only for Web search (as demonstrated by Google, Bing, etc.) but also in many application domains.
This textbook intends to be a comprehensive and substantially self-contained two-volume book covering performance, reliability, and availability evaluation subjects. The volumes focus on computing systems, although the methods may also be applied to other systems. The first volume covers Chapter 1 to Chapter 14, whose subtitle is ``Performance Modeling and Background". The second volume encompasses Chapter 15 to Chapter 25 and has the subtitle ``Reliability and Availability Modeling, Measuring and Workload, and Lifetime Data Analysis". This text is helpful for computer performance professionals for supporting planning, design, configuring, and tuning the performance, reliability, and availability of computing systems. Such professionals may use these volumes to get acquainted with specific subjects by looking at the particular chapters. Many examples in the textbook on computing systems will help them understand the concepts covered in each chapter. The text may also be helpful for the instructor who teaches performance, reliability, and availability evaluation subjects. Many possible threads could be configured according to the interest of the audience and the duration of the course. Chapter 1 presents a good number of possible courses programs that could be organized using this text. Volume I is composed of the first two parts, besides Chapter 1. Part I gives the knowledge required for the subsequent parts of the text. This part includes six chapters. It covers an introduction to probability, descriptive statistics and exploratory data analysis, random variables, moments, covariance, some helpful discrete and continuous random variables, Taylor series, inference methods, distribution fitting, regression, interpolation, data scaling, distance measures, and some clustering methods. Part II presents methods for performance evaluation modeling, such as operational analysis, Discrete-Time Markov Chains (DTMC), and Continuous Time Markov Chains (CTMC), Markovian queues, Stochastic Petri nets (SPN), and discrete event simulation.
This textbook intends to be a comprehensive and substantially self-contained two-volume book covering performance, reliability, and availability evaluation subjects. The volumes focus on computing systems, although the methods may also be applied to other systems. The first volume covers Chapter 1 to Chapter 14, whose subtitle is ``Performance Modeling and Background". The second volume encompasses Chapter 15 to Chapter 25 and has the subtitle ``Reliability and Availability Modeling, Measuring and Workload, and Lifetime Data Analysis". This text is helpful for computer performance professionals for supporting planning, design, configuring, and tuning the performance, reliability, and availability of computing systems. Such professionals may use these volumes to get acquainted with specific subjects by looking at the particular chapters. Many examples in the textbook on computing systems will help them understand the concepts covered in each chapter. The text may also be helpful for the instructor who teaches performance, reliability, and availability evaluation subjects. Many possible threads could be configured according to the interest of the audience and the duration of the course. Chapter 1 presents a good number of possible courses programs that could be organized using this text. Volume II is composed of the last two parts. Part III examines reliability and availability modeling by covering a set of fundamental notions, definitions, redundancy procedures, and modeling methods such as Reliability Block Diagrams (RBD) and Fault Trees (FT) with the respective evaluation methods, adopts Markov chains, Stochastic Petri nets and even hierarchical and heterogeneous modeling to represent more complex systems. Part IV discusses performance measurements and reliability data analysis. It first depicts some basic measuring mechanisms applied in computer systems, then discusses workload generation. After, we examine failure monitoring and fault injection, and finally, we discuss a set of techniques for reliability and maintainability data analysis.
The book constitutes selected high quality papers presented in International Conference on Computing, Power and Communication Technologies 2018 (GUCON 2018) organised by Galgotias University, India, in September 2018. It discusses issues in electrical, computer and electronics engineering and technologies. The selected papers are organised into three sections - cloud computing and computer networks; data mining and big data analysis; and bioinformatics and machine learning. In-depth discussions on various issues under these topics provides an interesting compilation for researchers, engineers, and students.