Download Free Principles Of Modeling And Simulation In The Medical And Health Sciences Book in PDF and EPUB Free Download. You can read online Principles Of Modeling And Simulation In The Medical And Health Sciences and write the review.

This edited book is divided into three parts: Fundamentals of Medical and Health Sciences Modeling and Simulation introduces modeling and simulation in the medical and health sciences; Medical and Health Sciences Models provides the theoretical underpinnings of medical and health sciences modeling; and Modeling and Simulation Applications in Medical and Health Sciences focuses on teaching, training, and research applications. The book begins with a general discussion of modeling and simulation from the modeling and simulation discipline perspective. This discussion grounds the reader in common terminology. It also relates this terminology to concepts found in the medical and health care (MHC) area to help bridge the gap between developers and MHC practitioners. Three distinct modes of modeling and simulation are described: live, constructive, and virtual. The live approach explains the concept of using real (live) people employing real equipment for training purposes. The constructive mode is a means of engaging medical modeling and simulation. In constructive simulation, simulated people and simulated equipment are developed to augment real-world conditions for training or experimentation purposes. The virtual mode is perhaps the most fascinating as virtual operating rooms and synthetic training environments are being produced for practitioners and educators at break-neck speed. In this mode, real people are employing simulated equipment to improve physical skills and decision-making ability.
Explores wide-ranging applications of modeling and simulation techniques that allow readers to conduct research and ask "What if?" Principles of Modeling and Simulation: A Multidisciplinary Approach is the first book to provide an introduction to modeling and simulation techniques across diverse areas of study. Numerous researchers from the fields of social science, engineering, computer science, and business have collaborated on this work to explore the multifaceted uses of computational modeling while illustrating their applications in common spreadsheets. The book is organized into three succinct parts: Principles of Modeling and Simulation provides a brief history of modeling and simulation, outlines its many functions, and explores the advantages and disadvantages of using models in problem solving. Two major reasons to employ modeling and simulation are illustrated through the study of a specific problem in conjunction with the use of related applications, thus gaining insight into complex concepts. Theoretical Underpinnings examines various modeling techniques and introduces readers to two significant simulation concepts: discrete event simulation and simulation of continuous systems. This section details the two primary methods in which humans interface with simulations, and it also distinguishes the meaning, importance, and significance of verification and validation. Practical Domains delves into specific topics related to transportation, business, medicine, social science, and enterprise decision support. The challenges of modeling and simulation are discussed, along with advanced applied principles of modeling and simulation such as representation techniques, integration into the application infrastructure, and emerging technologies. With its accessible style and wealth of real-world examples, Principles of Modeling and Simulation: A Multidisciplinary Approach is a valuable book for modeling and simulation courses at the upper-undergraduate and graduate levels. It is also an indispensable reference for researchers and practitioners working in statistics, mathematics, engineering, computer science, economics, and the social sciences who would like to further develop their understanding and knowledge of the field.
This unified modeling textbook for students of biomedical engineering provides a complete course text on the foundations, theory and practice of modeling and simulation in physiology and medicine. It is dedicated to the needs of biomedical engineering and clinical students, supported by applied BME applications and examples. Developed for biomedical engineering and related courses: speaks to BME students at a level and in a language appropriate to their needs, with an interdisciplinary clinical/engineering approach, quantitative basis, and many applied examples to enhance learning Delivers a quantitative approach to modeling and also covers simulation: the perfect foundation text for studies across BME and medicine Extensive case studies and engineering applications from BME, plus end-of-chapter exercises
The aim of this book is to introduce the subject of mathematical modeling in the life sciences. It is intended for students of mathematics, the physical sciences, and engineering who are curious about biology. Additionally, it will be useful to students of the life sciences and medicine who are unsatisfied with mere description and who seek an understanding of biological mechanism and dynamics through the use of mathematics. The book will be particularly useful to premedical students, because it will introduce them not only to a collection of mathematical methods but also to an assortment of phenomena involving genetics, epidemics, and the physiology of the heart, lung, and kidney. Because of its introductory character, mathematical prerequisites are kept to a minimum; they involve only what is usually covered in the first semester of a calculus sequence. The authors have drawn on their extensive experience as modelers to select examples which are simple enough to be understood at this elementary level and yet realistic enough to capture the essence of significant biological phenomena drawn from the areas of population dynamics and physiology. Because the models presented are realistic, the book can serve not only as an introduction to mathematical methods but also as a mathematical introduction to the biological material itself. For the student, who enjoys mathematics, such an introduction will be far more stimulating and satisfying than the purely descriptive approach that is traditional in the biological sciences.
This is a second edition to the original published by Springer in 2006. The comprehensive volume takes a textbook approach systematically developing the field by starting from linear models and then moving up to generalized linear and non-linear mixed effects models. Since the first edition was published the field has grown considerably in terms of maturity and technicality. The second edition of the book therefore considerably expands with the addition of three new chapters relating to Bayesian models, Generalized linear and nonlinear mixed effects models, and Principles of simulation. In addition, many of the other chapters have been expanded and updated.
Introduces various modeling and simulation methods and paradigms that are used to explain and solve the predominant challenges facing society Handbook of Real-World Applications in Modeling and Simulation provides a thorough explanation of modeling and simulation in the most useful, current, and predominant applied areas of transportation, homeland security, medicine, operational research, military science, and business modeling. Offering a cutting-edge and accessible presentation, this book discusses how and why the presented domains have become leading applications of modeling and simulation techniques. Contributions from leading academics and researchers integrate modeling and simulation theories, methods, and data to analyze challenges that involve technological and social issues. The book begins with an introduction that explains why modeling and simulation is a reliable analysis assessment tool for complex systems problems. Subsequent chapters provide an orientation to various modeling and simulation methods and paradigms that are used to explain and solve the predominant challenges across real-world applied domains. Additionally, the handbook: Provides a practical one-stop reference on modeling and simulation and contains an accessible introduction to key concepts and techniques Introduces, trains, and prepares readers from statistics, mathematics, engineering, computer science, economics, and business to use modeling and simulation in their studies and research Features case studies that are representative of fundamental areas of multidisciplinary studies and provides a concise look at the key concepts of modeling and simulation Contains a collection of original ideas on modeling and simulation to help academics and practitioners develop a multifunctional perspective Self-contained chapters offer a comprehensive approach to explaining each respective domain and include sections that explore the related history, theory, modeling paradigms, and case studies. Key terms and techniques are clearly outlined, and exercise sets allow readers to test their comprehension of the presented material. Handbook of Real-World Applications in Modeling and Simulation is an essential reference for academics and practitioners in the areas of operations research, business, management science, engineering, statistics, mathematics, and computer science. The handbook is also a suitable supplement for courses on modeling and simulation at the graduate level.
The only book dedicated to physiologically-based pharmacokinetic modeling in pharmaceutical science Physiologically-based pharmacokinetic (PBPK) modeling has become increasingly widespread within the pharmaceutical industry over the last decade, but without one dedicated book that provides the information researchers need to learn these new techniques, its applications are severely limited. Describing the principles, methods, and applications of PBPK modeling as used in pharmaceutics, Physiologically-Based Pharmacokinetic (PBPK) Modeling and Simulations fills this void. Connecting theory with practice, the book explores the incredible potential of PBPK modeling for improving drug discovery and development. Comprised of two parts, the book first provides a detailed and systematic treatment of the principles behind physiological modeling of pharmacokinetic processes, inter-individual variability, and drug interactions for small molecule drugs and biologics. The second part looks in greater detail at the powerful applications of PBPK to drug research. Designed for a wide audience encompassing readers looking for a brief overview of the field as well as those who need more detail, the book includes a range of important learning aids. Featuring end-of-chapter keywords for easy reference a valuable asset for general or novice readers without a PBPK background along with an extensive bibliography for those looking for further information, Physiologically- Based Pharmacokinetic (PBPK) Modeling and Simulations is the essential single-volume text on one of the hottest topics in the pharmaceutical sciences today.
Dieses Buch ist eine unschätzbare Informationsquelle für alle Ingenieure, Designer, Manager und Techniker bei Entwicklung, Studium und Anwendung einer großen Vielzahl von Simulationstechniken. Es vereint die Arbeit internationaler Simulationsexperten aus Industrie und Forschung. Alle Aspekte der Simulation werden in diesem umfangreichen Nachschlagewerk abgedeckt. Der Leser wird vertraut gemacht mit den verschiedenen Techniken von Industriesimulationen sowie mit Einsatz, Anwendungen und Entwicklungen. Neueste Fortschritte wie z.B. objektorientierte Programmierung werden ebenso behandelt wie Richtlinien für den erfolgreichen Umgang mit simulationsgestützten Prozessen. Auch gibt es eine Liste mit den wichtigsten Vertriebs- und Zulieferadressen. (10/98)
Explore the military and combat applications of modeling and simulation Engineering Principles of Combat Modeling and Distributed Simulation is the first book of its kind to address the three perspectives that simulation engineers must master for successful military and defense related modeling: the operational view (what needs to be modeled); the conceptual view (how to do combat modeling); and the technical view (how to conduct distributed simulation). Through methods from the fields of operations research, computer science, and engineering, readers are guided through the history, current training practices, and modern methodology related to combat modeling and distributed simulation systems. Comprised of contributions from leading international researchers and practitioners, this book provides a comprehensive overview of the engineering principles and state-of-the-art methods needed to address the many facets of combat modeling and distributed simulation and features the following four sections: Foundations introduces relevant topics and recommended practices, providing the needed basis for understanding the challenges associated with combat modeling and distributed simulation. Combat Modeling focuses on the challenges in human, social, cultural, and behavioral modeling such as the core processes of "move, shoot, look, and communicate" within a synthetic environment and also equips readers with the knowledge to fully understand the related concepts and limitations. Distributed Simulation introduces the main challenges of advanced distributed simulation, outlines the basics of validation and verification, and exhibits how these systems can support the operational environment of the warfighter. Advanced Topics highlights new and developing special topic areas, including mathematical applications fo combat modeling; combat modeling with high-level architecture and base object models; and virtual and interactive digital worlds. Featuring practical examples and applications relevant to industrial and government audiences, Engineering Principles of Combat Modeling and Distributed Simulation is an excellent resource for researchers and practitioners in the fields of operations research, military modeling, simulation, and computer science. Extensively classroom tested, the book is also ideal for courses on modeling and simulation; systems engineering; and combat modeling at the graduate level.
This book provides readers with a detailed orientation to healthcare simulation research, aiming to provide descriptive and illustrative accounts of healthcare simulation research (HSR). Written by leaders in the field, chapter discussions draw on the experiences of the editors and their international network of research colleagues. This seven-section practical guide begins with an introduction to the field by relaying the key components of HSR. Sections two, three, four, and five then cover various topics relating to research literature, methods for data integration, and qualitative and quantitative approaches. Finally, the book closes with discussions of professional practices in HSR, as well as helpful tips and case studies.Healthcare Simulation Research: A Practical Guide is an indispensable reference for scholars, medical professionals and anyone interested in undertaking HSR.