Download Free Principles Of Human Locomotion Book in PDF and EPUB Free Download. You can read online Principles Of Human Locomotion and write the review.

How can geckoes walk on the ceiling and basilisk lizards run over water? What are the aerodynamic effects that enable small insects to fly? What are the relative merits of squids' jet-propelled swimming and fishes' tail-powered swimming? Why do horses change gait as they increase speed? What determines our own vertical leap? Recent technical advances have greatly increased researchers' ability to answer these questions with certainty and in detail. This text provides an up-to-date overview of how animals run, walk, jump, crawl, swim, soar, hover, and fly. Excluding only the tiny creatures that use cilia, it covers all animals that power their movements with muscle--from roundworms to whales, clams to elephants, and gnats to albatrosses. The introduction sets out the general rules governing all modes of animal locomotion and considers the performance criteria--such as speed, endurance, and economy--that have shaped their selection. It introduces energetics and optimality as basic principles. The text then tackles each of the major modes by which animals move on land, in water, and through air. It explains the mechanisms involved and the physical and biological forces shaping those mechanisms, paying particular attention to energy costs. Focusing on general principles but extensively discussing a wide variety of individual cases, this is a superb synthesis of current knowledge about animal locomotion. It will be enormously useful to advanced undergraduates, graduate students, and a range of professional biologists, physicists, and engineers.
This book addresses instruments, methodologies and diagnostic methods used to evaluate and diagnose human movement, locomotion and physical status in general. Starting from historical perspective, the idea of understanding human locomotion by applying technical measurement devices and incorporating measurement data into physical representation of gross body movement is presented and explained, an approach known as inverse dynamics. With this approach as a kind of umbrella concept, components of measurement systems including relevant signal and data processing methods are described. Modern instruments to capture body movement by measuring its kinematics, kinetics and surface electromyography (sEMG) are thus described; all systems being used dominantly—if not exclusively—in a movement analysis laboratory setting. Focusing mainly on human posture and gait, but including also examples of movement patterns from selected kinesiological and sports activities, the book attempts to present essentials of biomechanics and biomedical engineering approach to this subject matter. It illustrates how data collected and elaborated by modern engineering technology can complement traditional expert knowledge of a kinesiologist or a medical doctor. The book is applicable in the fields of sports, physical activities, as well as in medical diagnostics and rehabilitation. The examples of this book’s practical application might be in evaluation of efficiency of human gait, in evaluation of skeletal muscle fatigue in physical exercise, in biomechanical diagnostics of traumatological conditions requiring orthopaedic treatment and the like. This book can also be used in planning and executing research endeavours, particularly in a clinical context as a reference for various diagnostics procedures. It presents the lecture notes of a course carrying the same name within Medical Studies in English at the University of Zagreb for more than a decade.
The importance of measurements for the proper assessment of human locomotion is increasingly being recognized. The fields of application encompass both healthy and pathological locomotion as encountered in rehabilitation medicine, orthopedics, kinesiology, sports medicine, and the like. Measurement of Human Locomotion provides an up-to-date des
Physical rehabilitation for walking recovery after spinal cord injury is undergoing a paradigm shift. Therapy historically has focused on compensation for sensorimotor deficits after SCI using wheelchairs and bracing to achieve mobility. With locomotor training, the aim is to promote recovery via activation of the neuromuscular system below the level of the lesion. What basic scientists have shown us as the potential of the nervous system for plasticity, to learn, even after injury is being translated into a rehabilitation strategy by taking advantage of the intrinsic biology of the central nervous system. While spinal cord injury from basic and clinical perspectives was the gateway for developing locomotor training, its application has been extended to other populations with neurologic dysfunction resulting in loss of walking or walking disability.
An engaging introduction to human and animal movement seen through the lens of mechanics. How do Olympic sprinters run so fast? Why do astronauts adopt a bounding gait on the moon? How do running shoes improve performance while preventing injuries? This engaging and generously illustrated book answers these questions by examining human and animal movement through the lens of mechanics. The authors present simple conceptual models to study walking and running and apply mechanical principles to a range of interesting examples. They explore the biology of how movement is produced, examining the structure of a muscle down to its microscopic force-generating motors. Drawing on their deep expertise, the authors describe how to create simulations that provide insight into muscle coordination during walking and running, suggest treatments to improve function following injury, and help design devices that enhance human performance.
Gait analysis is the systematic study of human walking, using the eye and brain of experienced observers, augmented by instrumentation for measuring body movements, body mechanics, and the activity of the muscles. Since Aristotle’s work on gait analysis more than 2000 years ago, it has become an established clinical science used extensively in the healthcare and rehabilitation fields for diagnosis and treatment. Forensic Gait Analysis details the more recent, and rapidly developing, use of gait analysis in the forensic sciences. The book considers the use of observational gait analysis, based on video recordings, to assist in the process of identification or exclusion. With the increase in use of CCTV and surveillance systems over the last 20 to 30 years, there has been a steady and rapid increase in the use of gait as evidence. Currently, gait analysis is widely used in the UK in criminal investigations, with increasing awareness of its potential use in the US, Europe, and globally. The book details the history of the science, current practices, and of the emergent application to establish best-practice standards that conform to those of other forensic science disciplines. Engagement with the Forensic Science Regulator, and the Chartered Society of Forensic Sciences in the UK, and the International Association for Identification has helped to ensure and enhance the quality assurance of forensic gait analysis. However, there remains a fundamental lack of standardized training and methodology for use in evidentiary and investigative casework. This book fills that void, serving as one of the first to describe the current state of practice, capabilities and limitations, and to outline methods, standards of practice and expectations of the gait analyst as a forensic practitioner. Forensic Gait Analysis reflects current research and forensic practice and will serve as a state-of-the-art guide to the use of gait analysis in the forensic context—for both education and training purposes. It will be a welcome addition to the libraries of professionals in the areas of podiatry, gait analysis, forensic video analysis, law enforcement, and legal practice.
This book presents recent research on computational intelligence (CI) algorithms in the field of sport. In the modern age, information technologies have greatly reduced the need for human effort in the carrying out of many daily tasks. These technologies have radically influenced the lives of humans, and the information society in general. Unfortunately, these advances have brought with them certain negative effects, including the encouragement of sedentary lifestyles and the attendant health problems such as obesity that these engender. Other modern maladies, chiefly cardiovascular disease, diabetes, and cancer, have also been on the increase. Today, sports are virtually the only activity that still connects modern humans to their original lifestyle, which was based on physical motion. This book tears familiarizing sports scientists with the foundations of computational intelligence, while at the same time presenting the problems that have arisen in the training domain to computer scientists. Lastly, the book proposes the use of an Artificial Sports Trainer designed to enhance the training of modern athletes who cannot afford the considerable expense of hiring a human personal trainer. This intelligent system can monitor performance and design and direct appropriate future training, thus promoting both healthy lifestyles and competitive success in athletes.
Examines human motion through the integrated presentation of anatomy and biomechanics and applying that knowledge to a variety of motor skills. This text combines coverage of physiology with scholarship in biomechanics as applied to motor skills.
Biomechanics and Gait Analysis presents a comprehensive book on biomechanics that focuses on gait analysis. It is written primarily for biomedical engineering students, professionals and biomechanists with a strong emphasis on medical devices and assistive technology, but is also of interest to clinicians and physiologists. It allows novice readers to acquire the basics of gait analysis, while also helping expert readers update their knowledge. The book covers the most up-to-date acquisition and computational methods and advances in the field. Key topics include muscle mechanics and modeling, motor control and coordination, and measurements and assessments. This is the go to resource for an understanding of fundamental concepts and how to collect, analyze and interpret data for research, industry, clinical and sport.