Download Free Prime Number Book in PDF and EPUB Free Download. You can read online Prime Number and write the review.

This book contains the World's Smallest Prime Number. Nothing more, nothing less. Please do not buy it.
This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium series established to honour Professors A. J. Coleman and H. W. Ellis and to acknowledge their long-lasting interest in the quality of teaching undergraduate students. In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guinness Book oj Records, reminded me very gently that the most "innumerate" people of the world are of a certain tribe in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes Morris, I'm from Brazil, but my book will contain numbers different from 'one.' " He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name), and consists of about 16 million digits of the number 11. "I assure you Morris, that in spite of the beauty of the apparent randomness of the decimal digits of 11, I'll be sure that my text will also include some words." Acknowledgment. The manuscript of this book was prepared on the word processor by Linda Nuttall. I wish to express my appreciation for the great care, speed, and competence of her work. Paulo Ribenboim CONTENTS Preface vii Guiding the Reader xiii Index of Notations xv Introduction Chapter 1. How Many Prime Numbers Are There? 3 I. Euclid's Proof 3 II.
A fascinating journey into the mind-bending world of prime numbers Cicadas of the genus Magicicada appear once every 7, 13, or 17 years. Is it just a coincidence that these are all prime numbers? How do twin primes differ from cousin primes, and what on earth (or in the mind of a mathematician) could be sexy about prime numbers? What did Albert Wilansky find so fascinating about his brother-in-law's phone number? Mathematicians have been asking questions about prime numbers for more than twenty-five centuries, and every answer seems to generate a new rash of questions. In Prime Numbers: The Most Mysterious Figures in Math, you'll meet the world's most gifted mathematicians, from Pythagoras and Euclid to Fermat, Gauss, and Erd?o?s, and you'll discover a host of unique insights and inventive conjectures that have both enlarged our understanding and deepened the mystique of prime numbers. This comprehensive, A-to-Z guide covers everything you ever wanted to know--and much more that you never suspected--about prime numbers, including: * The unproven Riemann hypothesis and the power of the zeta function * The "Primes is in P" algorithm * The sieve of Eratosthenes of Cyrene * Fermat and Fibonacci numbers * The Great Internet Mersenne Prime Search * And much, much more
Prime numbers have fascinated mathematicians since the time of Euclid. This book presents some of our best tools to capture the properties of these fundamental objects, beginning with the most basic notions of asymptotic estimates and arriving at the forefront of mathematical research. Detailed proofs of the recent spectacular advances on small and large gaps between primes are made accessible for the first time in textbook form. Some other highlights include an introduction to probabilistic methods, a detailed study of sieves, and elements of the theory of pretentious multiplicative functions leading to a proof of Linnik's theorem. Throughout, the emphasis has been placed on explaining the main ideas rather than the most general results available. As a result, several methods are presented in terms of concrete examples that simplify technical details, and theorems are stated in a form that facilitates the understanding of their proof at the cost of sacrificing some generality. Each chapter concludes with numerous exercises of various levels of difficulty aimed to exemplify the material, as well as to expose the readers to more advanced topics and point them to further reading sources.
This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium senes. In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guinness Book of Records, reminded me very gently that the most "innumerate" people of the world are of a certain trible in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes, Morris, I'm from Brazil, but my book will contain numbers different from ·one.''' He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name) and consists of about 16 million decimal digits of the number Te. "I assure you, Morris, that in spite of the beauty of the appar ent randomness of the decimal digits of Te, I'll be sure that my text will include also some words." And then I proceeded putting together the magic combina tion of words and numbers, which became The Book of Prime Number Records. If you have seen it, only extreme curiosity could impel you to have this one in your hands. The New Book of Prime Number Records differs little from its predecessor in the general planning. But it contains new sections and updated records.
The Pulitzer Prize–winning magazine’s stories of mathematical explorations show that inspiration strikes haphazardly, revealing surprising solutions and exciting discoveries—with a foreword by James Gleick These stories from Quanta Magazine map the routes of mathematical exploration, showing readers how cutting-edge research is done, while illuminating the productive tension between conjecture and proof, theory and intuition. The stories show that, as James Gleick puts it in the foreword, “inspiration strikes willy-nilly.” One researcher thinks of quantum chaotic systems at a bus stop; another suddenly realizes a path to proving a theorem of number theory while in a friend's backyard; a statistician has a “bathroom sink epiphany” and discovers the key to solving the Gaussian correlation inequality. Readers of The Prime Number Conspiracy, says Quanta editor-in-chief Thomas Lin, are headed on “breathtaking intellectual journeys to the bleeding edge of discovery strapped to the narrative rocket of humanity's never-ending pursuit of knowledge.” Winner of the 2022 Pulitzer Prize for Explanatory Reporting, Quanta is the only popular publication that offers in-depth coverage of the latest breakthroughs in understanding our mathematical universe. It communicates mathematics by taking it seriously, wrestling with difficult concepts and clearly explaining them in a way that speaks to our innate curiosity about our world and ourselves. Readers of this volume will learn that prime numbers have decided preferences about the final digits of the primes that immediately follow them (the “conspiracy” of the title); consider whether math is the universal language of nature (allowing for “a unified theory of randomness”); discover surprising solutions (including a pentagon tiling proof that solves a century-old math problem); ponder the limits of computation; measure infinity; and explore the eternal question “Is mathematics good for you?” Contributors Ariel Bleicher, Robbert Dijkgraaf, Kevin Hartnett, Erica Klarreich, Thomas Lin, John Pavlus, Siobhan Roberts, Natalie Wolchover Copublished with Quanta Magazine
At first glance the prime numbers appear to be distributed in a very irregular way amongst the integers, but it is possible to produce a simple formula that tells us (in an approximate but well defined sense) how many primes we can expect to find that are less than any integer we might choose. The prime number theorem tells us what this formula is and it is indisputably one of the great classical theorems of mathematics. This textbook gives an introduction to the prime number theorem suitable for advanced undergraduates and beginning graduate students. The author's aim is to show the reader how the tools of analysis can be used in number theory to attack a 'real' problem, and it is based on his own experiences of teaching this material.
One notable new direction this century in the study of primes has been the influx of ideas from probability. The goal of this book is to provide insights into the prime numbers and to describe how a sequence so tautly determined can incorporate such a striking amount of randomness. The book opens with some classic topics of number theory. It ends with a discussion of some of the outstanding conjectures in number theory. In between are an excellent chapter on the stochastic properties of primes and a walk through an elementary proof of the Prime Number Theorem. This book is suitable for anyone who has had a little number theory and some advanced calculus involving estimates. Its engaging style and invigorating point of view will make refreshing reading for advanced undergraduates through research mathematicians.
Originally published in 1934, this volume presents the theory of the distribution of the prime numbers in the series of natural numbers. Despite being long out of print, it remains unsurpassed as an introduction to the field.
Loo-Keng Hua was a master mathematician, best known for his work using analytic methods in number theory. In particular, Hua is remembered for his contributions to Waring's Problem and his estimates of trigonometric sums. Additive Theory of Prime Numbers is an exposition of the classic methods as well as Hua's own techniques, many of which have now also become classic. An essential starting point is Vinogradov's mean-value theorem for trigonometric sums, which Hua usefully rephrases and improves. Hua states a generalized version of the Waring-Goldbach problem and gives asymptotic formulas for the number of solutions in Waring's Problem when the monomial $x^k$ is replaced by an arbitrary polynomial of degree $k$. The book is an excellent entry point for readers interested in additive number theory. It will also be of value to those interested in the development of the now classic methods of the subject.