Download Free Prime Ideals In Skew And Q Skew Polynomial Rings Book in PDF and EPUB Free Download. You can read online Prime Ideals In Skew And Q Skew Polynomial Rings and write the review.

New methods are developed to describe prime ideals in skew polynomial rings [italic capital]S = [italic capital]R[[italic]y; [lowercase Greek]Tau, [lowercase Greek]Delta]], for automorphisms [lowercase Greek]Tau and [lowercase Greek]Tau-derivations [lowercase Greek]Delta] of a noetherian coefficient ring [italic capital]R.
There has been continued interest in skew polynomial rings and related constructions since Ore's initial studies in the 1930s. New examples not covered by previous analyses have arisen in the current study of quantum groups. The aim of this work is to introduce and develop new techniques for understanding the prime ideals in skew polynomial rings $S=R[y;\tau, \delta]$, for automorphisms $\tau$ and $\tau$-derivations $\delta$ of a noetherian coefficient ring $R$. Goodearl and Letzter give particular emphasis to the use of recently developed techniques from the theory of noncommutative noetherian rings. When $R$ is an algebra over a field $k$ on which $\tau$ and $\delta$ act trivially, a complete description of the prime ideals of $S$ is given under the additional assumption that $\tau -1 \delta \tau = q\delta$ for some nonzero $q\in k$. This last hypothesis is an abstraction of behavior found in many quantum algebras, including $q$-Weyl algebras and coordinate rings of quantum matrices, and specific examples along these lines are considered in detail.
This volume consists of a collection of invited papers on the theory of rings and modules, most of which were presented at the biennial Ohio State — Denison Conference, May 1992, in memory of Hans Zassenhaus. The topics of these papers represent many modern trends in Ring Theory. The wide variety of methodologies and techniques demonstrated will be valuable in particular to young researchers in the area. Covering a broad range, this book should appeal to a wide spectrum of researchers in algebra and number theory.
This work is based on a set of lectures and invited papers presented at a meeting in Murcia, Spain, organized by the European Commission's Training and Mobility of Researchers (TMR) Programme. It contains information on the structure of representation theory of groups and algebras and on general ring theoretic methods related to the theory.
The already broad range of applications of ring theory has been enhanced in the eighties by the increasing interest in algebraic structures of considerable complexity, the so-called class of quantum groups. One of the fundamental properties of quantum groups is that they are modelled by associative coordinate rings possessing a canonical basis, which allows for the use of algorithmic structures based on Groebner bases to study them. This book develops these methods in a self-contained way, concentrating on an in-depth study of the notion of a vast class of non-commutative rings (encompassing most quantum groups), the so-called Poincaré-Birkhoff-Witt rings. We include algorithms which treat essential aspects like ideals and (bi)modules, the calculation of homological dimension and of the Gelfand-Kirillov dimension, the Hilbert-Samuel polynomial, primality tests for prime ideals, etc.
This monograph is devoted to a new class of non-commutative rings, skew Poincaré–Birkhoff–Witt (PBW) extensions. Beginning with the basic definitions and ring-module theoretic/homological properties, it goes on to investigate finitely generated projective modules over skew PBW extensions from a matrix point of view. To make this theory constructive, the theory of Gröbner bases of left (right) ideals and modules for bijective skew PBW extensions is developed. For example, syzygies and the Ext and Tor modules over these rings are computed. Finally, applications to some key topics in the noncommutative algebraic geometry of quantum algebras are given, including an investigation of semi-graded Koszul algebras and semi-graded Artin–Schelter regular algebras, and the noncommutative Zariski cancellation problem. The book is addressed to researchers in noncommutative algebra and algebraic geometry as well as to graduate students and advanced undergraduate students.
This book consists of an expanded set of lectures on algebraic aspects of quantum groups. It particularly concentrates on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. Large parts of the material are developed in full textbook style, featuring many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof.
This book contains the definitions of several ring constructions used in various applications. The concept of a groupoid-graded ring includes many of these constructions as special cases and makes it possible to unify the exposition. Recent research results on groupoid-graded rings and more specialized constructions are presented. In addition, there is a chapter containing open problems currently considered in the literature. Ring Constructions and Applications can serve as an excellent introduction for graduate students to many ring constructions as well as to essential basic concepts of group, semigroup and ring theories used in proofs.
This volume contains the proceedings of the conference `New Trends in Noncommutative Algebra', held at the University of Washington, Seattle, in August 2010. The articles will provide researchers and graduate students with an indispensable overview of topics of current interest. Specific fields covered include: noncommutative algebraic geometry, representation theory, Calabi-Yau algebras, quantum algebras and deformation quantization, Poisson algebras, group algebras, and noncommutative Iwasawa algebras.
The Ring Theory Conference, held a the University of Miskolc, Hungary, successfully accomplished its two goals: to reflect contemporary trends in the subject area; and to offer a meeting place for a large number of Eastern European algebraists and their colleagues from around the world. Particular emphasis was placed on recent developments in the following four areas: representation theory, group algebras, PI algebras and general ring theory. This book presents 13 of the invited lectures.