Download Free Prevention And Mitigation Of Natural And Anthropogenic Hazards Due To Land Subsidence Book in PDF and EPUB Free Download. You can read online Prevention And Mitigation Of Natural And Anthropogenic Hazards Due To Land Subsidence and write the review.

This volume gathers the latest advances, innovations, and applications in the field of geotechnical engineering, as presented by leading researchers and engineers at the 7th Italian National Congress of Geotechnical Researchers (CNRIG 2019), entitled “Geotechnical Research for the Protection and Development of the Territory” (Lecco, Italy, July 3-5, 2019). The congress is intended to promote exchanges on the role of geotechnical research and its findings regarding the protection against natural hazards, design criteria for structures and infrastructures, and the definition of sustainable development strategies. The contributions cover a diverse range of topics, including infrastructural challenges, underground space utilization, and sustainable construction in problematic soils and situations, as well as geo-environmental aspects such as landfills, environmental and energy geotechnics, geotechnical monitoring, and risk assessment and mitigation. Selected by means of a rigorous peer-review process, they will spur novel research directions and foster future multidisciplinary collaborations.
This book advances a three-step program for mitigation of natural and anthropogenic hazards, addressing mitigation economics and funding possibilities to meet the needs of at risk countries that lack the financial resources to invest in disaster reduction programs. Within the context of mitigation, this book covers prediction-prevention-preparedness for global warming/climate change as existing and progressive processes that create or abet slow developing or rapidly occurring hazards that endanger society such as sea level rise, extreme weather events, threats to food/water security, and the spread of infectious diseases.
The book collects seven original contributions in the field of climate and underlying human influences on renewable groundwater resources and/or stream–aquifer interactions. The first contribution introduces the following six ones into the overall framework of the topic. The second contribution assesses the impact of climate change scenarios on land subsidence related to groundwater level depletion in detrital aquifers. The third contribution studies the patterns of river infiltration and the associated controlling factors by using a combination of field investigations and modeling techniques. The fourth contribution introduces a method to improve the modeling of streamflow in high-permeability bedrock basins receiving interbasin groundwater flow. The fifth contribution discusses the role of resilience of hydrogeological systems affected by either climate and/or anthropic actions in order to understand how anticipating negative changes and preserving its services. The sixth contribution analyzes the water balance of wetlands, which are systems highly sensitive to climate change and human action. The seventh contribution identifies groundwater bodies with low vulnerability to pumping to be used as potential buffer values for sustainable conjunctive use management during droughts.
Covers the latest developments in PNT technologies, including integrated satellite navigation, sensor systems, and civil applications Featuring sixty-four chapters that are divided into six parts, this two-volume work provides comprehensive coverage of the state-of-the-art in satellite-based position, navigation, and timing (PNT) technologies and civilian applications. It also examines alternative navigation technologies based on other signals-of-opportunity and sensors and offers a comprehensive treatment on integrated PNT systems for consumer and commercial applications. Volume 1 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications contains three parts and focuses on the satellite navigation systems, technologies, and engineering and scientific applications. It starts with a historical perspective of GPS development and other related PNT development. Current global and regional navigation satellite systems (GNSS and RNSS), their inter-operability, signal quality monitoring, satellite orbit and time synchronization, and ground- and satellite-based augmentation systems are examined. Recent progresses in satellite navigation receiver technologies and challenges for operations in multipath-rich urban environment, in handling spoofing and interference, and in ensuring PNT integrity are addressed. A section on satellite navigation for engineering and scientific applications finishes off the volume. Volume 2 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications consists of three parts and addresses PNT using alternative signals and sensors and integrated PNT technologies for consumer and commercial applications. It looks at PNT using various radio signals-of-opportunity, atomic clock, optical, laser, magnetic field, celestial, MEMS and inertial sensors, as well as the concept of navigation from Low-Earth Orbiting (LEO) satellites. GNSS-INS integration, neuroscience of navigation, and animal navigation are also covered. The volume finishes off with a collection of work on contemporary PNT applications such as survey and mobile mapping, precision agriculture, wearable systems, automated driving, train control, commercial unmanned aircraft systems, aviation, and navigation in the unique Arctic environment. In addition, this text: Serves as a complete reference and handbook for professionals and students interested in the broad range of PNT subjects Includes chapters that focus on the latest developments in GNSS and other navigation sensors, techniques, and applications Illustrates interconnecting relationships between various types of technologies in order to assure more protected, tough, and accurate PNT Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications will appeal to all industry professionals, researchers, and academics involved with the science, engineering, and applications of position, navigation, and timing technologies. pnt21book.com
This volume contains the papers presented at IALCCE2016, the fifth International Symposium on Life-Cycle Civil Engineering (IALCCE2016), to be held in Delft, The Netherlands, October 16-19, 2016. It consists of a book of extended abstracts and a DVD with full papers including the Fazlur R. Khan lecture, keynote lectures, and technical papers from all over the world. All major aspects of life-cycle engineering are addressed, with special focus on structural damage processes, life-cycle design, inspection, monitoring, assessment, maintenance and rehabilitation, life-cycle cost of structures and infrastructures, life-cycle performance of special structures, and life-cycle oriented computational tools. The aim of the editors is to provide a valuable source for anyone interested in life-cycle of civil infrastructure systems, including students, researchers and practitioners from all areas of engineering and industry.
The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides policymakers with regular assessments of the scientific basis of human-induced climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report on the Ocean and Cryosphere in a Changing Climate is the most comprehensive and up-to-date assessment of the observed and projected changes to the ocean and cryosphere and their associated impacts and risks, with a focus on resilience, risk management response options, and adaptation measures, considering both their potential and limitations. It brings together knowledge on physical and biogeochemical changes, the interplay with ecosystem changes, and the implications for human communities. It serves policymakers, decision makers, stakeholders, and all interested parties with unbiased, up-to-date, policy-relevant information. This title is also available as Open Access on Cambridge Core.
This book presents 09 keynote and invited lectures and 177 technical papers from the 4th International Conference on Geotechnics for Sustainable Infrastructure Development, held on 28-29 Nov 2019 in Hanoi, Vietnam. The papers come from 35 countries of the five different continents, and are grouped in six conference themes: 1) Deep Foundations; 2) Tunnelling and Underground Spaces; 3) Ground Improvement; 4) Landslide and Erosion; 5) Geotechnical Modelling and Monitoring; and 6) Coastal Foundation Engineering. The keynote lectures are devoted by Prof. Harry Poulos (Australia), Prof. Adam Bezuijen (Belgium), Prof. Delwyn Fredlund (Canada), Prof. Lidija Zdravkovic (UK), Prof. Masaki Kitazume (Japan), and Prof. Mark Randolph (Australia). Four invited lectures are given by Prof. Charles Ng, ISSMGE President, Prof.Eun Chul Shin, ISSMGE Vice-President for Asia, Prof. Norikazu Shimizu (Japan), and Dr.Kenji Mori (Japan).
The book comprises nine chapters, with seven core chapters dealing in detail with the basic principles and processes of the main hydrological components of the water cycle: precipitation, interception, evaporation, soil water, groundwater, streamflow and water quality. It takes a broadly non-mathematical approach, although some numeracy is assumed particularly in the treatment of evaporation and soil water. The introductory and concluding chapters show the relations and interactions between these components, and also put the importance of water into a wider human context – its significant role in human history, its key role today, and potential role in future in the light of climate change and increasing global population pressures. The book is thoroughly up-to-date, contains over 100 diagrams and photographs to explain and amplify the concepts described, and contains over 750 references for further study.
Natural and human-induced changes in Earth's interior, land surface, biosphere, atmosphere, and oceans affect all aspects of life. Understanding these changes requires a range of observations acquired from land-, sea-, air-, and space-based platforms. To assist NASA, NOAA, and USGS in developing these tools, the NRC was asked to carry out a "decadal strategy" survey of Earth science and applications from space that would develop the key scientific questions on which to focus Earth and environmental observations in the period 2005-2015 and beyond, and present a prioritized list of space programs, missions, and supporting activities to address these questions. This report presents a vision for the Earth science program; an analysis of the existing Earth Observing System and recommendations to help restore its capabilities; an assessment of and recommendations for new observations and missions for the next decade; an examination of and recommendations for effective application of those observations; and an analysis of how best to sustain that observation and applications system.
We live on a dynamic Earth shaped by both natural processes and the impacts of humans on their environment. It is in our collective interest to observe and understand our planet, and to predict future behavior to the extent possible, in order to effectively manage resources, successfully respond to threats from natural and human-induced environmental change, and capitalize on the opportunities â€" social, economic, security, and more â€" that such knowledge can bring. By continuously monitoring and exploring Earth, developing a deep understanding of its evolving behavior, and characterizing the processes that shape and reshape the environment in which we live, we not only advance knowledge and basic discovery about our planet, but we further develop the foundation upon which benefits to society are built. Thriving on Our Changing Planet presents prioritized science, applications, and observations, along with related strategic and programmatic guidance, to support the U.S. civil space Earth observation program over the coming decade.