Download Free Preparation And Characterization Of Zeolite And Zeolite Films Book in PDF and EPUB Free Download. You can read online Preparation And Characterization Of Zeolite And Zeolite Films and write the review.

This volume is a complete progress report on the various aspects of zeolite synthesis on a molecular level. It provides many examples that illustrate how zeolites can be crystallized and what the important parameters are that control crystallization. Forty-two chapters cover such topics as: crystallization techniques; gel chemistry; crystal size and morphology; the role of organic compounds; and novel synthesis procedures. It offers a complete review of zeolite synthesis as well as the latest finding in this important field. Contains benchmark contributions from many notable pioneers in the field, including R.M. Barrer, H. Robson, and Robert Milton.
Authored by a top-level team of both academic and industrial researchers in the field, this is an up-to-date review of mesoporous zeolites. The leading experts cover novel preparation methods that allow for a purpose-oriented fine-tuning of zeolite properties, as well as the related materials, discussing the specific characterization methods and the applications in close relation to each individual preparation approach. The result is a self-contained treatment of the different classes of mesoporous zeolites. With its academic insights and practical relevance this is a comprehensive handbook for researchers in the field and related areas, as well as for developers from the chemical industry.
Zeolites and Zeolite-like Materials offers a comprehensive and up-to-date review of the important areas of zeolite synthesis, characterization, and applications. Its chapters are written in an educational, easy-to-understand format for a generation of young zeolite chemists, especially those who are just starting research on the topic and need a reference that not only reflects the current state of zeolite research, but also identifies gaps and opportunities. The book demonstrates various applications of zeolites in heterogeneous catalysis and biomass conversion and identifies the endless possibilities that exist for this class of materials, their structures, functions, and future applications. In addition, it demonstrates that zeolite-like materials should be regarded as a living body developing towards new modern applications, thereby responding to the needs of modern technology challenges, including biomass conversion, medicine, laser techniques, and nanomaterial design, etc. The book will be of interest not only to zeolite-focused researchers, but also to a broad scientific and non-scientific audience. - Provides a comprehensive review of the literature pertaining to zeolites and zeolite-like materials since 2000 - Covers the chemistry of novel zeolite-like materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), hierarchical zeolite materials, new mesoporous and composite zeolite-like micro/mesoporous materials - Presents essential information of the new zeolite-like structures, with a balanced coverage of the most important areas of the zeolite research (synthesis, characterization, adsorption, catalysis, new applications of zeolites and zeolite-like materials) - Contains chapters prepared by known specialists who are members of the International Zeolite Association
Widely used in adsorption, catalysis and ion exchange, the family of molecular sieves such as zeolites has been greatly extended and many advances have recently been achieved in the field of molecular sieves synthesis and related porous materials. Chemistry of Zeolites and Related Porous Materials focuses on the synthetic and structural chemistry of the major types of molecular sieves. It offers a systematic introduction to and an in-depth discussion of microporous, mesoporous, and macroporous materials and also includes metal-organic frameworks. Provides focused coverage of the key aspects of molecular sieves Features two frontier subjects: molecular engineering and host-guest advanced materials Comprehensively covers both theory and application with particular emphasis on industrial uses This book is essential reading for researches in the chemical and materials industries and research institutions. The book is also indispensable for researches and engineers in R&D (for catalysis) divisions of companies in petroleum refining and the petrochemical and fine chemical industries.
This book is devoted to the new development of zeolitic catalysts with an emphasis on new strategies for the preparation of zeolites, novel techniques for their characterization and emerging applications of zeolites as catalysts for sustainable chemistry, especially in the fields of energy, biomass conversion and environmental protection. Over the years, energy and the environment have become the most important global issues, while zeolitic catalysts play important roles in addressing them. With individual chapters written by leading experts, this book offers an essential reference work for researchers and professionals in both academia and industry. Feng-Shou Xiao is a Professor at the Department of Chemistry, Zhejiang University, China. Xiangju Meng is an Associate Professor at the Department of Chemistry, Zhejiang University, China.
A membrane reactor is a device for simultaneously performing a reaction and a membrane-based separation in the same physical device. Therefore, the membrane not only plays the role of a separator, but also takes place in the reaction itself. This text covers, in detail, the preparation and characterisation of all types of membranes used in membranes reactors. Each membrane synthesis process used by membranologists is explained by well known scientists in their specific research field. The book opens with an exhaustive review and introduction to membrane reactors, introducing the recent advances in this field. The following chapters concern the preparation of both organic and inorganic, and in both cases, a deep analysis of all the techniques used to prepare membrane are presented and discussed. A brief historical introduction for each technique is also included, followed by a complete description of the technique as well as the main results presented in the international specialized literature. In order to give to the reader a summary look to the overall work, a conclusive chapter is included for collecting all the information presented in the previous chapters. Key features: Fills a gap in the market for a scientific book describing the preparation and characterization of all the kind of membranes used in membrane reactors Discusses an important topic - there is increasing emphasis on membranes in general, due to their use as energy efficient separation tools and the ‘green’ chemistry opportunities they offer Includes a review about membrane reactors, several chapters concerning the preparation organic, inorganic, dense, porous, and composite membranes and a conclusion with a comparison among the different membrane preparation techniques
Approx.480 pagesApprox.480 pages
Zeolite synthesis is an active field of research. As long as this continues, new phases will be discovered and new techniques for preparing existing phases will appear. This edition of Verified Synthesis of Zeolitic Materials contains all the recipes from the first edition plus 24 new recipes. Five new introductory articles have been included plus those from the first edition, some of which have been substantially revised. The XRD patterns have been recorded using different instrument settings from those in the first edition and are intended to conform to typical X-ray diffraction practice. In most cases, only the XRD pattern for the productas synthesised is printed here. The exceptions are those phases which show marked changes in the XRD pattern upon calcination.
The Handbook of Membrane Separations: Chemical, Pharmaceutical, and Biotechnological Applications provides detailed information on membrane separation technologies as they have evolved over the past decades. To provide a basic understanding of membrane technology, this book documents the developments dealing with these technologies. It explores chemical, pharmaceutical, food processing and biotechnological applications of membrane processes ranging from selective separation to solvent and material recovery. This text also presents in-depth knowledge of membrane separation mechanisms, transport models, membrane permeability computations, membrane types and modules, as well as membrane reactors.