Download Free Preparation And Characterization Of Stable Macroporous Titania Nano Wells Book in PDF and EPUB Free Download. You can read online Preparation And Characterization Of Stable Macroporous Titania Nano Wells and write the review.

Doctoral Thesis / Dissertation from the year 2011 in the subject Chemistry - Materials Chemistry, East China University of Science and Technology (-), language: English, abstract: Considerable effort has been made to design, fabricate, and manipulate nanostructured materials by innovative approaches. The precise control of nanoscale structures will pave the way not only for elucidating unique size/shape dependent physicochemical properties but also for realizing new applications in science and technology. Nanotechnology offers unprecedented opportunities for improving our daily lives and the environment in which we live. This thesis mainly describes recent progress in the design, fabrication, and modification of nanostructured semiconductor materials for environmental applications. The scope of this thesis covers TiO2, Bi2O3 and BiOCl materials, focusing particularly on TiO2-based nanostructures (e.g., pure, doped, coupled, mesoporous, hierarchically porous, and ordered mesoporous TiO2). Mesoporous titania is of particular interest since this class of materials possesses well-defined porosity and large specific surface areas. For photocatalytic degradation of organics, these desirable properties are anticipated to improve the efficiency. So in the first part of work, I have synthesized the mesoporous titania by using poly ethylene glycol as a template in dilute acetic acid aqueous solution by hydrothermal process and investigated the effect of PEG molecular weights and thermal treatment on the resultant structure and photocatalytic activity. When the molecular weights of PEG vary from 600 to 20,000, the particle sizes of mesoporous-TiO2 structure decrease from 15.1 to 13.3 nm and mean pore sizes increase from 6.9-10.6 nm. The activities of these mesoporous-TiO2 photocatalysts prepared by using PEG are evaluated and compared with Degussa P-25 using chloro-phenol as a testing compound. [...]
This comprehensive three-volume handbook brings together a review of the current state together with the latest developments in sol-gel technology to put forward new ideas. The first volume, dedicated to synthesis and shaping, gives an in-depth overview of the wet-chemical processes that constitute the core of the sol-gel method and presents the various pathways for the successful synthesis of inorganic and hybrid organic-inorganic materials, bio- and bio-inspired materials, powders, particles and fibers as well as sol-gel derived thin films, coatings and surfaces. The second volume deals with the mechanical, optical, electrical and magnetic properties of sol-gel derived materials and the methods for their characterization such as diffraction methods and nuclear magnetic resonance, infrared and Raman spectroscopies. The third volume concentrates on the various applications in the fields of membrane science, catalysis, energy research, biomaterials science, biomedicine, photonics and electronics.
This thesis focuses on porous monolithic materials that are not in the forms of particles, fibers, or films. In particular, the synthetic strategy of porous monolithic materials via the sol–gel method accompanied by phase separation, which is characterized as the non-templating method for tailoring well-defined macropores, is described from the basics to actual synthesis. Porous materials are attracting more and more attention in various fields such as electronics, energy storage, catalysis, sensing, adsorbents, biomedical science, and separation science. To date, many efforts have been made to synthesize porous materials in various chemical compositions—organics, inorganics including metals, glasses and ceramics, and organic-inorganic hybrids. Also demonstrated in this thesis are the potential applications of synthesized porous monolithic materials to separation media as well as to electrodes for electric double-layer capacitors (EDLCs) and Li-ion batteries (LIBs). This work is ideal for graduate students in materials science and is also useful to engineers or scientists seeking basic knowledge of porous monolithic materials.
Over the last few years there has been a growing concern over the increasing concentration of micropollutants originating from a great variety of sources including pharmaceutical, chemical engineering and personal care product industries in rivers, lakes, soil and groundwater. As most of the micropollutants are polar and persistent compounds, they are only partially or not at all removed from wastewater and thus can enter the environment posing a great risk to the biota. It is hypothesized that wastewater is one of the most important point sources for micropollutants. Treatment of Micropollutants in Water and Wastewater gives a comprehensive overview of modern analytical methods and will summarize novel single and hybrid methods to remove continuously emerging contaminants - micropollutants from the aqueous phase. New trends (e.g. sensor technology, nanotechnology and hybrid treatment technologies) are described in detail. The book is very timely because the new techniques are still in the development phase and have to be realized not only in the laboratory but also on a larger scale. The content of the book is divided into chapters that present current descriptive and analytical methods that are available to detect and measure micropollutants together with detailed information on various chemical, biological and physicochemical methods that have evolved over the last few decades. Treatment of Micropollutants in Water and Wastewater will also enable readers to make well informed choices through providing an understanding of why and how micropollutants must be removed from water sources, and what are the most appropriate and available techniques for providing a cost and technologically effective and sustainable solutions for reaching the goal of micropollutant-free water and wastewater. The book will be suitable for water and wastewater professionals as well for students and researchers in civil engineering, environmental engineering and process engineering fields.
Design, Fabrication, and Characterization of Multifunctional Nanomaterials covers major techniques for the design, synthesis, and development of multifunctional nanomaterials. The chapters highlight the main characterization techniques, including X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and scanning probe microscopy.The book explores major synthesis methods and functional studies, including: - Brillouin spectroscopy; - Temperature-dependent Raman spectroscopic studies; - Magnetic, ferroelectric, and magneto-electric coupling analysis; - Organ-on-a-chip methods for testing nanomaterials; - Magnetron sputtering techniques; - Pulsed laser deposition techniques; - Positron annihilation spectroscopy to prove defects in nanomaterials; - Electroanalytic techniques. This is an important reference source for materials science students, scientists, and engineers who are looking to increase their understanding of design and fabrication techniques for a range of multifunctional nanomaterials. - Explains the major design and fabrication techniques and processes for a range of multifunctional nanomaterials; - Demonstrates the design and development of magnetic, ferroelectric, multiferroic, and carbon nanomaterials for electronic applications, energy generation, and storage; - Green synthesis techniques and the development of nanofibers and thin films are also emphasized.
This critical volume examines the different methods used for the synthesis of a great number of photocatalysts, including TiO2, ZnO and other modified semiconductors, as well as characterization techniques used for determining the optical, structural and morphological properties of the semiconducting materials. Additionally, the authors discuss photoelectrochemical methods for determining the light activity of the photocatalytic semiconductors by means of measurement of properties such as band gap energy, flat band potential and kinetics of hole and electron transfer. Photocatalytic Semiconductors: Synthesis, Characterization and Environmental Applications provide an overview of the semiconductor materials from first- to third-generation photocatalysts and their applications in wastewater treatment and water disinfection. The book further presents economic and toxicological aspects in the production and application of photocatalytic materials.
Hazardous and Trace Materials in Soil and Plants: Sources, Effects and Management explores the latest advancements in reducing, avoiding and eliminating soil contaminants that challenge the health and safety of agricultural plants. With a focus on minimizing the production of those hazardous substances, controlling their distribution and ensuring safe utilization, the book explores each contributing area and provides insights toward improved, sustainable and secure production. This is an excellent reference resource on both current research and future directions from laboratory research to field applications. The combined impacts of climate change and industrialization have led to increased and diversified threats to the health of the soil in which our food crops are grown, as well as in the plants themselves. This dual-hazard scenario is increasingly recognized as a threat to not just the environment, but to global food security as agricultural soils contaminated with pollutants alter plant metabolism, thus resulting in reduced crop quality and production quantity. - Addresses the challenges of mitigating toxic substances in plants, including agricultural crops - Presents current status and future prospects for managing biotic and abiotic environmental stress factors through plant stress tolerance mechanisms - Includes chapters that address both biotic and abiotic stresses, agricultural and environmental science, toxicology, biotechnology, nanotechnology, and molecular studies - Integrates insights and developments between environmental and plant science
A unique book that summarizes the properties, toxicology, and biomedical applications of TiO2-based nanoparticles Nanotechnology is becoming increasingly important for products used in our daily lives. Nanometer-sized titanium dioxide (TiO2) are widely used in industry for different purposes, such as painting, sunscreen, printing, cosmetics, biomedicine, and so on. This book summarizes the advances of TiO2 based nanobiotechnology and nanomedicine, covering materials properties, toxicological research, and biomedical application, such as antibacter, biosensing, and cancer theranostics. It uniquely integrates the TiO2 applications from physical properties, toxicology to various biomedical applications, and includes black TiO2 based cancer theranostics. Beginning with a comprehensive introduction to the properties and applications of nanoparticles, TiO2 Nanoparticles: Applications in Nanobiotechnology, Theranostics and Nanomedicine offers chapters on: Toxicity of TiO2 Nanoparticles; Antibacterial Applications of TiO2 Nanoparticles; Surface Enhanced Raman Spectrum of TiO2 Nanoparticle for Biosensing (TiO2 Nanoparticle Served as SERS Sensing Substrate); TiO2 as Inorganic Photosensitizer for Photodynamic Therapy; Cancer Theranostics of Black TiO2 Nanoparticles; and Neurodegenerative Disease Diagnostics and Therapy of TiO2-Based Nanoparticles. This title: Blends the physical properties, toxicology of TiO2 nanoparticles to the many biomedical applications Includes black TiO2 based cancer theranostics in its coverage Appeals to a broad audience of researchers in academia and industry working on nanomaterials-based biosensing, drug delivery, nanomedicine TiO2 Nanoparticles: Applications in Nanobiotechnology, Theranostics and Nanomedicine is an ideal book for medicinal chemists, analytical chemists, biochemists, materials scientists, toxicologists, and those in the pharmaceutical industry.
This book discusses new and innovative trends and techniques in the removal of toxic and or refractory pollutants through various environmental biotechnological processes from wastewater, both at the laboratory and industrial scale. It focuses primarily on environmentally-friendly technologies which respect the principles of sustainable development, including the advanced trends in remediation through an approach of environmental biotechnological processes from either industrial or sewage wastewater. Features: Examines the fate and occurrence of refractory pollutants in wastewater treatment plants (WWTPs) and the potential approaches for their removal. Highlights advanced remediation procedures involving various microbiological and biochemical processes. Assesses and compares the potential application of numerous existing treatment techniques and introduces new, emerging technologies. Removal of Refractory Pollutants from Wastewater Treatment Plants is suitable for practicing engineers, researchers, water utility managers, and students who seek an excellent introduction and basic knowledge in the principles of environmental bioremediation technologies.
Comprehensive Sampling and Sample Preparation is a complete treatment of the theory and methodology of sampling in all physical phases and the theory of sample preparation for all major extraction techniques. It is the perfect starting point for researchers and students to design and implement their experiments and support those experiments with quality-reviewed background information. In its four volumes, fundamentals of sampling and sample preparation are reinforced through broad and detailed sections dealing with Biological and Medical, Environmental and Forensic, and Food and Beverage applications. The contributions are organized to reflect the way in which analytical chemists approach a problem. It is intended for a broad audience of analytical chemists, both educators and practitioners of the art and can assist in the preparation of courses as well in the selection of sampling and sample preparation techniques to address the challenges at hand. Above all, it is designed to be helpful in learning more about these topics, as well as to encourage an interest in sampling and sample preparation by outlining the present practice of the technology and by indicating research opportunities. Sampling and Sample preparation is a large and well-defined field in Analytical Chemistry, relevant for many application areas such as medicine, environmental science, biochemistry, pharmacology, geology, and food science. This work covers all these aspects and will be extremely useful to researchers and students, who can use it as a starting point to design and implement their experiments and for quality-reviewed background information There are limited resources that Educators can use to effectively teach the fundamental aspects of modern sample preparation technology. Comprehensive Sampling and Sample Preparation addresses this need, but focuses on the common principles of new developments in extraction technologies rather than the differences between techniques thus facilitating a more thorough understanding Provides a complete overview of the field. Not only will help to save time, it will also help to make correct assessments and avoid costly mistakes in sampling in the process Sample and sample preparation are integral parts of the analytical process but are often less considered and sometimes even completely disregarded in the available literature. To fill this gap, leading scientists have contributed 130 chapters, organized in 4 volumes, covering all modern aspects of sampling and liquid, solid phase and membrane extractions, as well as the challenges associated with different types of matrices in relevant application areas