Download Free Preconceptual Feasibility Study To Evaluate Alternative Means To Produce Plutonium 238 Book in PDF and EPUB Free Download. You can read online Preconceptual Feasibility Study To Evaluate Alternative Means To Produce Plutonium 238 and write the review.

There is currently no large-scale production of 238Pu in the United States. Feasibility studies were performed at the Idaho National Laboratory to assess the capability of developing alternative 238Pu production strategies. Initial investigations indicate potential capability to provision radioisotope-powered systems for future space exploration endeavors. For the short term production of 238Pu, sealed canisters of dilute 237Np solution in nitric acid could be irradiated in the Advanced Test Reactor (ATR). Targets in the large and medium "I" positions of the ATR were irradiated over a simulated period of 306 days and analyzed using MCNP5 and ORIGEN2.2. Approximately 0.5 kg of 238Pu could be produced annually in the ATR with purity greater than 92%. Optimization of the irradiation cycles could further increase the purity to greater than 98%. Whereas the typical purity of space batteries is between 80 to 85%, the higher purity 238Pu produced in the ATR could be blended with existing lower-purity inventory to produce useable material. Development of irradiation methods in the ATR provides the fastest alterative to restart United States 238Pu production. The analysis of 238Pu production in the ATR provides the technical basis for production using TRIGA® (Training, Research, Isotopes, General Atomics) nuclear reactors. Preliminary analyses envisage a production rate of approximately 0.7 kg annually using a single dedicated 5-MW TRIGA reactor with continuous flow loops to achieve high purity product. Two TRIGA reactors represent a robust means of providing at over 1 kg/yr of 238Pu annually using dilute solution targets of 237Np in nitric acid. Further collaboration and optimization of reactor design, radiochemical methods, and systems analyses would further increase annual 238Pu throughput, while reducing the currently evaluated reactor requirements.
The Team implemented a two-phase evaluation process. During the first phase, a wide variety of past and new candidate facilities and processing methods were assessed against the criteria established by DOE for this assessment. Any system or system element selected for consideration as an alternative within the project to reestablish domestic production of Pu-238 must meet the following minimum criteria: Any required source material must be readily available in the United States, without requiring the development of reprocessing technologies or investments in systems to separate material from identified sources. It must be cost, schedule, and risk competitive with existing baseline technology. Any identified facilities required to support the concept must be available to the program for the entire project life cycle (notionally 35 years, unless the concept is so novel as to require a shorter duration). It must present a solution that can generate at least 1.5 Kg of Pu-238 oxide per year, for at least 35 years. It must present a low-risk, near-term solution to the National Aeronautics and Space Administration's urgent mission need. DOE has implemented this requirement by eliminating from project consideration any alternative with key technologies at less than Technology Readiness Level 5. The Team evaluated the options meeting these criteria using a more detailed assessment of the reasonable facility variations and compared them to the preferred option, which consists of target irradiation at the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR), target fabrication and chemical separations processing at the ORNL Radiochemical Engineering Development Center, and neptunium 237 storage at the Materials and Fuels Complex at INL. This preferred option is consistent with the Records of Decision from the earlier National Environmental Policy Act (NEPA) documentation.
This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.
Evaluates the evidence for carcinogenicity of ionizing radiation from internally deposited radionuclides. The radionuclides considered belong to two broad categories, those that emit a-particles (helium nuclei) and those that emit b-particles (electrons).
In the late 1980s, the National Cancer Institute initiated an investigation of cancer risks in populations near 52 commercial nuclear power plants and 10 Department of Energy nuclear facilities (including research and nuclear weapons production facilities and one reprocessing plant) in the United States. The results of the NCI investigation were used a primary resource for communicating with the public about the cancer risks near the nuclear facilities. However, this study is now over 20 years old. The U.S. Nuclear Regulatory Commission requested that the National Academy of Sciences provide an updated assessment of cancer risks in populations near USNRC-licensed nuclear facilities that utilize or process uranium for the production of electricity. Analysis of Cancer Risks in Populations near Nuclear Facilities: Phase 1 focuses on identifying scientifically sound approaches for carrying out an assessment of cancer risks associated with living near a nuclear facility, judgments about the strengths and weaknesses of various statistical power, ability to assess potential confounding factors, possible biases, and required effort. The results from this Phase 1 study will be used to inform the design of cancer risk assessment, which will be carried out in Phase 2. This report is beneficial for the general public, communities near nuclear facilities, stakeholders, healthcare providers, policy makers, state and local officials, community leaders, and the media.
Molten Salt Reactors and Thorium Energy, Second Edition is a fully updated comprehensive reference on the latest advances in MSR research and technology. Building on the successful first edition, Tom Dolan and the team of experts have fully updated the content to reflect the impressive advances from the last 5 years, ensuring this book continues to be the go-to reference on the topic. This new edition covers progress made in MSR design, details innovative experiments, and includes molten salt data, corrosion studies and deployment plans. The successful case studies section of the first edition have been removed, expanded, and fully updated, and are now published in a companion title called Global Case Studies on Molten Salt Reactors. Readers will gain a deep understanding of the advantages and challenges of MSR development and thorium fuel use, as well as step-by-step guidance on the latest in MSR reactor design. Each chapter provides a clear introduction, covers technical issues and includes examples and conclusions, while promoting the sustainability benefits throughout. A fully updated comprehensive handbook on Molten Salt Reactors and Thorium Energy, written by a team of global experts Covers MSR applications, technical issues, reactor types and reactor designs Includes 3 brand new chapters which reflect the latest advances in research and technology since the first edition published Presents case studies on molten salt reactors which aid in the transition to net zero by providing abundant clean, safe energy to complement wind and solar powe
Alternative Energy Sources is designed to give the reader, a clear view of the role each form of alternative energy may play in supplying the energy needs of the human society in the near future (20-50 years). The two first chapters on "energy demand and supply" and "environmental effects," set the tone as to why alternative energy is essential for the future. The third chapter gives the laws of energy conversion processes, as well as the limitations of converting one energy form to another. The section on exergy gives a quantitative background on the capability/potential of each energy source to produce power. The fourth, fifth and sixth chapters are expositions of fission and fusion nuclear energy, the power plants that may produce power from these sources and the issues that will frame the public debate on nuclear energy. The following five chapters include descriptions of the most common renewable energy sources (wind, solar, geothermal, biomass, hydroelectric) some of the less common sources (e.g. tidal and wave energy). The emphasis of these chapters will be on the global potential of each source, the engineering/technical systems that are used in harnessing the potential of each source, the technological developments that will contribute to wider utilization of the sources and environmental effects associated with their wider use. The last three chapters are: "energy storage," which will become an important issue if renewable energy sources are used widely. The fourteen chapters in the book have been chosen so that one may fit a semester University course around this book. At the end of every chapter, there are 10-20 problems and 1-3 suggestions of semester projects that may be assigned to students for further research.
Based on a wealth of empirical studies and case studies, this book explains the strategic choices companies have to make in order to remain consistent. In each chapter, real-life examples illuminate the key message managers should take away from the book. It offers a purely managerial viewpoint focused on what managers can do to manage the business enviroment in any situation.