Download Free Precision Coupling Measurements Of The Higgs Boson Using The H Zz 4l Decay Channel Book in PDF and EPUB Free Download. You can read online Precision Coupling Measurements Of The Higgs Boson Using The H Zz 4l Decay Channel and write the review.

The work presented in this PhD dissertation is the first search at CMS for Higgs bosons produced in association with top quarks (ttH) in a final state consisting of only jets. The results presented in this book uncover a new class of ttH events that will help us elucidate our understanding of the Yukawa sector interactions between the Higgs boson and the top quark. Despite this being the most common decay signature for ttH, a large contamination of SM backgrounds makes it the most challenging for extracting a signal from data. The PhD thesis presents many sophisticated tools and techniques that were developed in order to overcome these challenges. These tools pave the way for future analyses to investigate other standard model and beyond-standard model physics.
This thesis presents the measurement of the Higgs boson cross section in the diphoton decay channel. The measurement relies on proton-proton collision data at a center-of-mass energy √s = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider (LHC). The collected data correspond to the full Run-2 dataset with an integrated luminosity of 139 fb-1. The measured cross sections are used to constrain anomalous Higgs boson interactions in the Effective Field Theory (EFT) framework. The results presented in this thesis represent a reduction by a factor 2 of the different photon and jet energy scale and resolution systematic uncertainties with respect to the previous ATLAS publication. The thesis details the calibration of electron and photon energies in ATLAS, in particular the measurement of the presampler energy scale and the estimation of its systematic uncertainty. This calibration was used to perform a measurement of the Higgs boson mass in the H → γγ and H → 4l channels using the 36 fb−1 dataset.
During Run 2 of the Large Hadron Collider, the ATLAS experiment recorded proton-proton collision events at 13 TeV, the highest energy ever achieved in a collider. Analysis of this dataset has provided new opportunities for precision measurements of the Higgs boson, including its interaction with the top quark. The Higgs-top coupling can be directly probed through the production of a Higgs boson in association with a top-antitop quark pair (ttH). The Higgs to diphoton decay channel is among the most sensitive for ttH measurements due to the excellent diphoton mass resolution of the ATLAS detector and the clean signature of this decay. Event selection criteria were developed using novel Machine Learning techniques to target ttH events, yielding a precise measurement of the ttH cross section in the diphoton channel and a 6.3 $\sigma$ observation of the ttH process in combination with other decay channels, as well as stringent limits on CP violation in the Higgs-top coupling.
This volume is a compilation of the lectures at TASI 2014. The coverage focuses on modern calculational techniques for scattering amplitudes, and on the phenomenology of QCD in hadronic collisions. Introductions to flavor physics, dark matter, and physics beyond the Standard Model are also provided. The lectures are accessible to graduate students at the initial stages of their research careers.
The Hierarchy Problem is arguably the most important guiding principle concerning the extension to high-energy scales of the Standard Model (SM) of Fundamental Interactions. Every scenario for addressing this issue unavoidably predicts new physics in the TeV energy range, which is currently being probed directly by the LHC experimental program. Among the possible solutions to the Hierarchy Problem, the scenario of a composite Higgs boson is a very simple idea and a rather plausible picture has emerged over the years by combining the following ingredients: First, the Higgs must be a (pseudo-) Nambu-Goldstone boson, rather than a generic hadron of the new strong sector. Second, through the so-called ‘partial compositeness’, SM particles mix with strong sector resonances with suitable quantum numbers, so that they become a linear combination of elementary and composite degrees of freedom. Recently, general descriptions of the Composite Higgs Scenario were developed which successfully capture the relevant features of this theoretical framework in a largely model-independent way. The present book provides a concise and illustrative introduction to the subject for a broad audience of graduate students and non-specialist researchers in the fields of particle, nuclear and gravitational physics.
The recent observation of the Higgs boson has been hailed as the scientific discovery of the century and led to the 2013 Nobel Prize in physics. This book describes the detailed science behind the decades-long search for this elusive particle at the Large Electron Positron Collider at CERN and at the Tevatron at Fermilab and its subsequent discovery and characterization at the Large Hadron Collider at CERN. Written by physicists who played leading roles in this epic search and discovery, this book is an authoritative and pedagogical exposition of the portrait of the Higgs boson that has emerged from a large number of experimental measurements. As the first of its kind, this book should be of interest to graduate students and researchers in particle physics.
This book highlights the most complete characterization of the Higgs boson properties performed to date in the "golden channel," i.e., decay into a pair of Z bosons which subsequently decay into four leptons. The data collected by the CMS experiment in the so-called Run-II data-taking period of the LHC are used to produce an extensive set of results that test in detail the predictions of the Standard Model. Given the remarkable predictive power of the SM when including the Higgs boson, possible new physics will require even more extensive studies at higher statistics. A massive upgrade of the detectors is necessary to maintain the current physics performance in the harsh environment of the High-Luminosity LHC (HL-LHC) project, expected to start by the end of 2027. The CMS Collaboration will replace the current endcap calorimeters with a High Granularity Calorimeter (HGCAL). The HGCAL will be the very first large-scale silicon-based imaging calorimeter ever employed in a high-energy physics experiment. This book presents the results of the analysis of the test beam data collected with the first large-scale prototype of the HGCAL. The results of this analysis are used to corroborate the final design of the HGCAL and its nominal physics performance expected for the HL-LHC operations.
In an epoch when particle physics is awaiting a major step forward, the Large Hydron Collider (LHC) at CERN, Geneva will soon be operational. It will collide a beam of high energy protons with another similar beam circulation in the same 27 km tunnel but in the opposite direction, resulting in the production of many elementary particles some never created in the laboratory before. It is widely expected that the LHC will discover the Higgs boson, the particle which supposedly lends masses to all other fundamental particles. In addition, the question as to whether there is some new law of physics at such high energy is likely to be answered through this experiment. The present volume contains a collection of articles written by international experts, both theoreticians and experimentalists, from India and abroad, which aims to acquaint a non-specialist with some basic issues related to the LHC. At the same time, it is expected to be a useful, rudimentary companion of introductory exposition and technical expertise alike, and it is hoped to become unique in its kind. The fact that there is substantial Indian involvement in the entire LHC endeavour, at all levels including fabrication, physics analysis procedures as well as theoretical studies, is also amply brought out in the collection.
Precision measurements of the Higgs boson’s properties are a powerful tool to look for deviations from the predictions of the Standard Model (SM) of particle physics. The 139/fb of proton-proton collision data which have been collected by the ATLAS experiment during Run 2 of the LHC, offer an opportunity to investigate rare Higgs-boson topologies, which are particularly sensitive to new physics scenarios but experimentally difficult to access. Several such measurements, which target Higgs-boson decays to heavy-flavour quarks, as well as their combinations are presented in this thesis. A novel analysis that measures Higgs-boson production in association with a heavy vector boson V (VH, with V=W,Z) at high energies is presented. Dedicated Higgs-boson reconstruction techniques are applied to reconstruct the highly Lorentz-boosted Higgs-boson decays into pairs of bottom quarks. The measurement is subsequently combined with a VH cross-section measurement at low and intermediate pT(V) to provide a differential cross-section measurement in kinematic fiducial volumes over the largest possible pT(V) range. All cross-section measurements agree with the SM predictions within relative uncertainties that range from 30% to 300%. The results are furthermore interpreted as limits on the parameters of a SM effective field theory. Finally, a combination of measurements of Higgs decays to heavy-flavour quarks is used to experimentally determine that the Higgs-boson coupling to charm quarks is weaker than to bottom quarks, as predicted by the SM. The target audience for the thesis are physicists and physics students, in particular those with a background in high energy physics.
This first open access volume of the handbook series contains articles on the standard model of particle physics, both from the theoretical and experimental perspective. It also covers related topics, such as heavy-ion physics, neutrino physics and searches for new physics beyond the standard model. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access