Download Free Precision Cosmology With Galaxy Cluster Surveys Book in PDF and EPUB Free Download. You can read online Precision Cosmology With Galaxy Cluster Surveys and write the review.

The acceleration of the universe, which is often attributed to "dark energy, " has posed one of the main challenges to fundamental physics. Galaxy clusters provide one of the most sensitive probes of dark energy because their abundance reflects the growth rate of large-scale structure and the expansion rate of the universe. Several large galaxy cluster surveys will soon provide tremendous statistical power to constrain the properties of dark energy; however, the constraining power of these surveys will be determined by how well systematic errors are controlled. Of these systematic errors, the dominant one comes from inferring cluster masses using observable signals of clusters, the so-called "observable--mass distribution." This thesis focuses on extracting dark energy information from forthcoming large galaxy cluster surveys, including how we maximize the cosmological information, how we control important systematics, and how precisely we need to calibrate theoretical models. We study how multi-wavelength follow-up observations can improve cluster mass calibration in optical surveys. We also investigate the impact of theoretical uncertainties in calibrating the spatial distributions of galaxy clusters on dark energy constraints. In addition, we explore how the formation history of galaxy clusters impacts the self-calibration of cluster mass. In addition, we use N-body simulations to develop a new statistical sample of cluster-size halos in order to further understand the observable--mass distribution. We study the completeness of subhalos in our cluster sample by comparing them with the satellite galaxies in the Sloan Digital Sky Survey. We also study how subhalo selections impact the inferred correlation between formation time and optical mass tracers, including cluster richness and velocity dispersion.
Clusters of galaxies are large assemblies of galaxies, hot gas and dark matter bound together by gravity. Galaxy clusters are now one of the most important cosmological probes to test the standard cosmological models. Constraints on the Dark Energy equation of state from the cluster number density measurements, deviations from the Gaussian perturbation models, the Sunyaev-Zeldovich effect as well as the dark matter proles are among the issues to be studied with clusters. The baryonic composition of clusters is dominated by hot gas that is in quasi-hydrostatic equilibrium within the dark matter-dominated gravitational potential well of the cluster. The hot gas is visible through spatially extended thermal X-ray emission, and it has been studied extensively both for assessing its physical properties and as a tracer of the large-scale structure of the Universe. Magnetic fields as well as a number of non-thermal plasma processes play a role in clusters of galaxies as we observe from radioastronomical observations. The goal of this volume is to review these processes and to investigate how they are interlinked. Overall, these papers provide a timely and comprehensive review of the multi-wavelength observations and theoretical understanding of clusters of galaxies in the cosmological context. Thus, the volume will be particularly useful to postgraduate students and researchers active in various areas of astrophysics and space science. Originally published in Space Science Reviews in the Topical Collection "Clusters of Galaxies: Physics and Cosmology"
This book presents a comprehensive review of the methods applied to derive cosmological parameters for a given model and test different cosmological models using the most massive collapsed structures in our Universe: clusters of galaxies. Clusters typically consist of hundreds of galaxies and high-temperature ionised gas trapped in their gravitational field dominated by dark matter extending out to 2-3 Mpc. The formation, evolution, and structure of these massive rare objects are sensitive probes of the assumed cosmology. This is a multidisciplinary field of astrophysics involving multi-wavelength observations, gravity theory, atomic physics, plasma physics, magneto-hydrodynamics, astrophysical cosmology and numerical simulations. Our understanding of the physics of clusters, which is essential when using them for cosmology, has been improved tremendously due to the recent advent of technology and observational strategy in multi-frequency observations, and enhanced by improved numerical simulations made possible by more advanced high performance computers. As a result of these developments, cosmology with clusters of galaxies has become a mature discipline recently, and provided an important contribution to establish our concordance cosmological constant dominated cold dark matter model. In the near future we expect a rapid expansion of this field due to results from new cluster surveys and multi-wavelength observations. This timely volume on this exciting newly established field discusses galaxy cluster physics and provides a detailed description of using clusters to derive cosmological parameters applying accurate measurements of individual clusters as well as using clusters as a statistical tool. A detailed discussion is given on degeneracies between derived parameters and the systematic effects, which are becoming a limiting factor. An account for using clusters to test different cosmological models is also presented. This volume provides an introduction to galaxy cluster cosmology for physics and astronomy graduate students and serves as a reference source for professionals.
A JENAM 2002 Workshop, Porto, Portugal, 3-5 September 2002
Cosmology seeks to characterise our Universe in terms of models based on well-understood and tested physics. Today we know our Universe with a precision that once would have been unthinkable. This book develops the entire mathematical, physical and statistical framework within which this has been achieved. It tells the story of how we arrive at our profound conclusions, starting from the early twentieth century and following developments up to the latest data analysis of big astronomical datasets. It provides an enlightening description of the mathematical, physical and statistical basis for understanding and interpreting the results of key space- and ground-based data. Subjects covered include general relativity, cosmological models, the inhomogeneous Universe, physics of the cosmic background radiation, and methods and results of data analysis. Extensive online supplementary notes, exercises, teaching materials, and exercises in Python make this the perfect companion for researchers, teachers and students in physics, mathematics, and astrophysics.
This book contains the proceedings of the International Astronomical Union Colloquium no. 195, held in Torino, Italy in 2004. The meeting investigated the formation of galaxies within a full cosmological context, focusing on the outer regions of galaxy clusters. The observed correlation of optical and radio properties of galaxies with their environment indicates that the formation and evolution of galaxies is intimately linked to the formation of large scale structure. With chapters written by leading authorities in the field, this timely volume investigates the role of the environment in determining the properties of galaxies. It describes the distribution of matter and galaxies on the largest scales in the Universe, the processes of cluster and galaxy formation, their role and interplay. This is a valuable collection of review articles for professional astronomers.
The reviews presented in this volume cover a huge range of cluster of galaxies topics. Readers will find the book essential reading on subjects such as the physics of the ICM gas, the internal cluster dynamics, and the detection of clusters using different observational techniques. The expert chapter authors also cover the huge advances being made in analytical or numerical modeling of clusters, weak and strong lensing effects, and the large scale structure as traced by clusters.
The year 2005, which marked the 100th anniversary of the 'annus mirabilis', the year in which Albert Einstein published three of his most important scientific papers, was the perfect opportunity to review and to present the current scientific understanding of relativistic topics. This book provides an up-to-date reference on the theory of gravity, relativistic astrophysics and cosmology. It is a useful reference tool for both the expert and the new-comer in these fields.
The large-scale structure of the Universe is dominated by vast voids with galaxies clustered in knots, sheets, and filaments, forming a great 'cosmic web'. In this personal account of the major astronomical developments leading to this discovery, we learn from Laird A. Thompson, a key protagonist, how the first 3D maps of galaxies were created. Using non-mathematical language, he introduces the standard model of cosmology before explaining how and why ideas about cosmic voids evolved, referencing the original maps, reproduced here. His account tells of the competing teams of observers, racing to publish their results, the theorists trying to build or update their models to explain them, and the subsequent large-scale survey efforts that continue to the present day. This is a well-documented account of the birth of a major pillar of modern cosmology, and a useful case study of the trials surrounding how this scientific discovery became accepted.