Download Free Practical Synthesis Of High Performance Analog Circuits Book in PDF and EPUB Free Download. You can read online Practical Synthesis Of High Performance Analog Circuits and write the review.

Practical Synthesis of High-Performance Analog Circuits presents a technique for automating the design of analog circuits. Market competition and the astounding pace of technological innovation exert tremendous pressure on circuit design engineers to turn ideas into products quickly and get them to market. In digital Application Specific Integrated Circuit (ASIC) design, computer aided design (CAD) tools have substantially eased this pressure by automating many of the laborious steps in the design process, thereby allowing the designer to maximise his design expertise. But the world is not solely digital. Cellular telephones, magnetic disk drives, neural networks and speech recognition systems are a few of the recent technological innovations that rely on a core of analog circuitry and exploit the density and performance of mixed analog/digital ASICs. To maximize profit, these mixed-signal ASICs must also make it to market as quickly as possible. However, although the engineer working on the digital portion of the ASIC can rely on sophisticated CAD tools to automate much of the design process, there is little help for the engineer working on the analog portion of the chip. With the exception of simulators to verify the circuit design when it is complete, there are almost no general purpose CAD tools that an analog design engineer can take advantage of to automate the analog design flow and reduce his time to market. Practical Synthesis of High-Performance Analog Circuits presents a new variation-tolerant analog synthesis strategy that is a significant step towards ending the wait for a practical analog synthesis tool. A new synthesis strategy is presented that can fully automate the path from a circuit topology and performance specifications to a sized variation-tolerant circuit schematic. This strategy relies on asymptotic waveform evaluation to predict circuit performance and simulated annealing to solve a novel non-linear infinite programming optimization formulation of the circuit synthesis problem via a sequence of smaller optimization problems. Practical Synthesis of High-Performance Analog Circuits will be of interest to analog circuit designers, CAD/EDA industry professionals, academics and students.
In the 11th edition in this successful series, the topics are structured-mixed-mode design, multi-bit sigma-delta converters and short range RF circuits. The book provides valuable information and excellent overviews of analogue circuit design, CAD and RF systems.
The tools and techniques you need to break the analog design bottleneck! Ten years ago, analog seemed to be a dead-end technology. Today, System-on-Chip (SoC) designs are increasingly mixed-signal designs. With the advent of application-specific integrated circuits (ASIC) technologies that can integrate both analog and digital functions on a single chip, analog has become more crucial than ever to the design process. Today, designers are moving beyond hand-crafted, one-transistor-at-a-time methods. They are using new circuit and physical synthesis tools to design practical analog circuits; new modeling and analysis tools to allow rapid exploration of system level alternatives; and new simulation tools to provide accurate answers for analog circuit behaviors and interactions that were considered impossible to handle only a few years ago. To give circuit designers and CAD professionals a better understanding of the history and the current state of the art in the field, this volume collects in one place the essential set of analog CAD papers that form the foundation of today's new analog design automation tools. Areas covered are: * Analog synthesis * Symbolic analysis * Analog layout * Analog modeling and analysis * Specialized analog simulation * Circuit centering and yield optimization * Circuit testing Computer-Aided Design of Analog Integrated Circuits and Systems is the cutting-edge reference that will be an invaluable resource for every semiconductor circuit designer and CAD professional who hopes to break the analog design bottleneck.
This is a book about real-world design techniques for analog circuits: amplifiers, filters, injection-locked oscillators, phase-locked loops, transimpedance amplifiers, group delay correction circuits, notch filters, and spectrum regrowth in digital radio frequency (RF) transmitters, etc. The book offers practical solutions to analog and RF problems, helping the reader to achieve high-performance circuit and system design. A variety of issues are covered, such as: How to flatten group delay of filters How to use reciprocity to advantage How to neutralize a parasitic capacitance How to deepen a notch by adding only two components to the network How to demodulate a signal using the secant waveform and its benefit How to flatten the frequency response of a diode detector When to use a transimpedance amplifier and how to maximize its performance How to recover non-return-to-zero (NRZ) data when alternating current (AC) coupling is required Why phase noise corrupts adjacent communication channels Simple method to prevent false locking in phase-locked loops How to improve the bandwidth of amplification by using current conveyors A very simple impedance matching technique requiring only one reactive component How to use optimization Quadrature distortion and cross-rail interference This book is meant to be a handbook (or a supplemental textbook) for students and practitioners in the design of analog and RF circuitry with primary emphasis on practical albeit sometimes unorthodox circuit realizations. Equations and behavioral simulations result in an abundance of illustrations, following a "words and pictures" easy-to-understand approach. Teachers will find the book an important supplement to a standard analog and RF course, or it may stand alone as a textbook. Working engineers may find it useful as a handbook by bookmarking some of the step-by-step procedures, e.g., the section on simplified impedance matching or group delay flattening.
What you’ll find here is a fascinating compendium of fundamental problem formulations of analog design centering and sizing. This essential work provides a differentiated knowledge about the tasks of analog design centering and sizing. In particular, worst-case scenarios are formulated and analyzed. This work is right at the crossing point between process and design technology, and is both reference work and textbook for understanding CAD methods in analog sizing.
Differential evolution is a very simple but very powerful stochastic optimizer. Since its inception, it has proved very efficient and robust in function optimization and has been applied to solve problems in many scientific and engineering fields. In Differential Evolution , Dr. Qing begins with an overview of optimization, followed by a state-of-the-art review of differential evolution, including its fundamentals and up-to-date advances. He goes on to explore the relationship between differential evolution strategies, intrinsic control parameters, non-intrinsic control parameters, and problem features through a parametric study. Findings and recommendations on the selection of strategies and intrinsic control parameter values are presented. Lastly, after an introductory review of reported applications in electrical and electronic engineering fields, different research groups demonstrate how the methods can be applied to such areas as: multicast routing, multisite mapping in grid environments, antenna arrays, analog electric circuit sizing, electricity markets, stochastic tracking in video sequences, and color quantization. Contains a systematic and comprehensive overview of differential evolution Reviews the latest differential evolution research Describes a comprehensive parametric study conducted over a large test bed Shows how methods can be practically applied to mobile communications grid computing circuits image processing power engineering Sample applications demonstrated by research groups in the United Kingdom, Australia, Italy, Turkey, China, and Eastern Europe Provides access to companion website with code examples for download Differential Evolution is ideal for application engineers, who can use the methods described to solve specific engineering problems. It is also a valuable reference for post-graduates and researchers working in evolutionary computation, design optimization and artificial intelligence. Researchers in the optimization field or engineers and managers involved in operations research will also find the book a helpful introduction to the topic.
This book presents a framework for the reuse-based design of AMS circuits. The framework is founded on three key elements: (1) a CAD-supported hierarchical design flow; (2) a complete, clear definition of the AMS reusable block; (3) the design for a reusability set of tools, methods, and guidelines. The book features a detailed tutorial and in-depth coverage of all issues and must-have properties of reusable AMS blocks.
This book describes new tools for front end analog designers, starting with global variation-aware sizing, and extending to novel variation-aware topology design. The tools aid design through automation, but more importantly, they also aid designer insight through automation. We now describe four design tasks, each more general than the previous, and how this book contributes design aids and insight aids to each. The ?rst designer task targeted is global robust sizing. This task is supported by a design tool that does automated, globally reliable, variation-aware s- ing (SANGRIA),and an insight-aiding tool that extracts designer-interpretable whitebox models that relate sizings to circuit performance (CAFFEINE). SANGRIA searches on several levels of problem dif?culty simultaneously, from lower cheap-to-evaluate “exploration” layers to higher full-evaluation “exploitation” layers (structural homotopy). SANGRIAmakes maximal use of circuit simulations by performing scalable data mining on simulation results to choose new candidate designs. CAFFEINE accomplishes its task by tre- ing function induction as a tree-search problem. It constrains its tree search space via a canonical-functional-form grammar, and searches the space with grammatically constrained genetic programming. The second designer task is topology selection/topology design. Topology selection tools must consider a broad variety of topologies such that an app- priate topology is selected, must easily adapt to new semiconductor process nodes, and readily incorporate new topologies. Topology design tools must allow designers to creatively explore new topology ideas as rapidly as possible.
Improving the performance of existing technologies has always been a focal practice in the development of computational systems. However, as circuitry is becoming more complex, conventional techniques are becoming outdated and new research methodologies are being implemented by designers. Performance Optimization Techniques in Analog, Mix-Signal, and Radio-Frequency Circuit Design features recent advances in the engineering of integrated systems with prominence placed on methods for maximizing the functionality of these systems. This book emphasizes prospective trends in the field and is an essential reference source for researchers, practitioners, engineers, and technology designers interested in emerging research and techniques in the performance optimization of different circuit designs.
Computational intelligence techniques are becoming more and more important for automated problem solving nowadays. Due to the growing complexity of industrial applications and the increasingly tight time-to-market requirements, the time available for thorough problem analysis and development of tailored solution methods is decreasing. There is no doubt that this trend will continue in the foreseeable future. Hence, it is not surprising that robust and general automated problem solving methods with satisfactory performance are needed.