Download Free Practical Embedded Security Book in PDF and EPUB Free Download. You can read online Practical Embedded Security and write the review.

Front Cover; Dedication; Embedded Systems Security: Practical Methods for Safe and Secure Softwareand Systems Development; Copyright; Contents; Foreword; Preface; About this Book; Audience; Organization; Approach; Acknowledgements; Chapter 1 -- Introduction to Embedded Systems Security; 1.1What is Security?; 1.2What is an Embedded System?; 1.3Embedded Security Trends; 1.4Security Policies; 1.5Security Threats; 1.6Wrap-up; 1.7Key Points; 1.8 Bibliography and Notes; Chapter 2 -- Systems Software Considerations; 2.1The Role of the Operating System; 2.2Multiple Independent Levels of Security.
The great strides made over the past decade in the complexity and network functionality of embedded systems have significantly enhanced their attractiveness for use in critical applications such as medical devices and military communications. However, this expansion into critical areas has presented embedded engineers with a serious new problem: their designs are now being targeted by the same malicious attackers whose predations have plagued traditional systems for years. Rising concerns about data security in embedded devices are leading engineers to pay more attention to security assurance in their designs than ever before. This is particularly challenging due to embedded devices' inherent resource constraints such as limited power and memory. Therefore, traditional security solutions must be customized to fit their profile, and entirely new security concepts must be explored. However, there are few resources available to help engineers understand how to implement security measures within the unique embedded context. This new book from embedded security expert Timothy Stapko is the first to provide engineers with a comprehensive guide to this pivotal topic. From a brief review of basic security concepts, through clear explanations of complex issues such as choosing the best cryptographic algorithms for embedded utilization, the reader is provided with all the information needed to successfully produce safe, secure embedded devices. - The ONLY book dedicated to a comprehensive coverage of embedded security! - Covers both hardware- and software-based embedded security solutions for preventing and dealing with attacks - Application case studies support practical explanations of all key topics, including network protocols, wireless and cellular communications, languages (Java and C/++), compilers, web-based interfaces, cryptography, and an entire section on SSL
New generations of IT users are increasingly abstracted from the underlying devices and platforms that provide and safeguard their services. As a result they may have little awareness that they are critically dependent on the embedded security devices that are becoming pervasive in daily modern life. Secure Smart Embedded Devices, Platforms and Applications provides a broad overview of the many security and practical issues of embedded devices, tokens, and their operation systems, platforms and main applications. It also addresses a diverse range of industry/government initiatives and considerations, while focusing strongly on technical and practical security issues. The benefits and pitfalls of developing and deploying applications that rely on embedded systems and their security functionality are presented. A sufficient level of technical detail to support embedded systems is provided throughout the text, although the book is quite readable for those seeking awareness through an initial overview of the topics. This edited volume benefits from the contributions of industry and academic experts and helps provide a cross-discipline overview of the security and practical issues for embedded systems, tokens, and platforms. It is an ideal complement to the earlier work, Smart Cards Tokens, Security and Applications from the same editors.
Although security is prevalent in PCs, wireless communications and other systems today, it is expected to become increasingly important and widespread in many embedded devices. For some time, typical embedded system designers have been dealing with tremendous challenges in performance, power, price and reliability. However now they must additionally deal with definition of security requirements, security design and implementation. Given the limited number of security engineers in the market, large background of cryptography with which these standards are based upon, and difficulty of ensuring the implementation will also be secure from attacks, security design remains a challenge. This book provides the foundations for understanding embedded security design, outlining various aspects of security in devices ranging from typical wireless devices such as PDAs through to contactless smartcards to satellites.
The Hardware Hacking Handbook takes you deep inside embedded devices to show how different kinds of attacks work, then guides you through each hack on real hardware. Embedded devices are chip-size microcomputers small enough to be included in the structure of the object they control, and they’re everywhere—in phones, cars, credit cards, laptops, medical equipment, even critical infrastructure. This means understanding their security is critical. The Hardware Hacking Handbook takes you deep inside different types of embedded systems, revealing the designs, components, security limits, and reverse-engineering challenges you need to know for executing effective hardware attacks. Written with wit and infused with hands-on lab experiments, this handbook puts you in the role of an attacker interested in breaking security to do good. Starting with a crash course on the architecture of embedded devices, threat modeling, and attack trees, you’ll go on to explore hardware interfaces, ports and communication protocols, electrical signaling, tips for analyzing firmware images, and more. Along the way, you’ll use a home testing lab to perform fault-injection, side-channel (SCA), and simple and differential power analysis (SPA/DPA) attacks on a variety of real devices, such as a crypto wallet. The authors also share insights into real-life attacks on embedded systems, including Sony’s PlayStation 3, the Xbox 360, and Philips Hue lights, and provide an appendix of the equipment needed for your hardware hacking lab – like a multimeter and an oscilloscope – with options for every type of budget. You’ll learn: How to model security threats, using attacker profiles, assets, objectives, and countermeasures Electrical basics that will help you understand communication interfaces, signaling, and measurement How to identify injection points for executing clock, voltage, electromagnetic, laser, and body-biasing fault attacks, as well as practical injection tips How to use timing and power analysis attacks to extract passwords and cryptographic keys Techniques for leveling up both simple and differential power analysis, from practical measurement tips to filtering, processing, and visualization Whether you’re an industry engineer tasked with understanding these attacks, a student starting out in the field, or an electronics hobbyist curious about replicating existing work, The Hardware Hacking Handbook is an indispensable resource – one you’ll always want to have onhand.
This Expert Guide gives you the techniques and technologies in software engineering to optimally design and implement your embedded system. Written by experts with a solutions focus, this encyclopedic reference gives you an indispensable aid to tackling the day-to-day problems when using software engineering methods to develop your embedded systems. With this book you will learn: - The principles of good architecture for an embedded system - Design practices to help make your embedded project successful - Details on principles that are often a part of embedded systems, including digital signal processing, safety-critical principles, and development processes - Techniques for setting up a performance engineering strategy for your embedded system software - How to develop user interfaces for embedded systems - Strategies for testing and deploying your embedded system, and ensuring quality development processes - Practical techniques for optimizing embedded software for performance, memory, and power - Advanced guidelines for developing multicore software for embedded systems - How to develop embedded software for networking, storage, and automotive segments - How to manage the embedded development process Includes contributions from: Frank Schirrmeister, Shelly Gretlein, Bruce Douglass, Erich Styger, Gary Stringham, Jean Labrosse, Jim Trudeau, Mike Brogioli, Mark Pitchford, Catalin Dan Udma, Markus Levy, Pete Wilson, Whit Waldo, Inga Harris, Xinxin Yang, Srinivasa Addepalli, Andrew McKay, Mark Kraeling and Robert Oshana. - Road map of key problems/issues and references to their solution in the text - Review of core methods in the context of how to apply them - Examples demonstrating timeless implementation details - Short and to- the- point case studies show how key ideas can be implemented, the rationale for choices made, and design guidelines and trade-offs
Learn how to pentest your hardware with the most common attract techniques and patterns Key FeaturesExplore various pentesting tools and techniques to secure your hardware infrastructureProtect your hardware by finding potential entry points like glitchesFind the best practices for securely designing your productsBook Description If you're looking for hands-on introduction to pentesting that delivers, then Practical Hardware Pentesting is for you. This book will help you plan attacks, hack your embedded devices, and secure the hardware infrastructure. Throughout the book, you will see how a specific device works, explore the functional and security aspects, and learn how a system senses and communicates with the outside world. You'll set up a lab from scratch and then gradually work towards an advanced hardware lab—but you'll still be able to follow along with a basic setup. As you progress, you'll get to grips with the global architecture of an embedded system and sniff on-board traffic, learn how to identify and formalize threats to the embedded system, and understand its relationship with its ecosystem. You'll discover how to analyze your hardware and locate its possible system vulnerabilities before going on to explore firmware dumping, analysis, and exploitation. The reverse engineering chapter will get you thinking from an attacker point of view; you'll understand how devices are attacked, how they are compromised, and how you can harden a device against the most common hardware attack vectors. By the end of this book, you will be well-versed with security best practices and understand how they can be implemented to secure your hardware. What you will learnPerform an embedded system test and identify security critical functionalitiesLocate critical security components and buses and learn how to attack them Discover how to dump and modify stored informationUnderstand and exploit the relationship between the firmware and hardwareIdentify and attack the security functions supported by the functional blocks of the deviceDevelop an attack lab to support advanced device analysis and attacksWho this book is for If you're a researcher or a security professional who wants a comprehensive introduction into hardware security assessment, then this book is for you. Electrical engineers who want to understand the vulnerabilities of their devices and design them with security in mind will also find this book useful. You won't need any prior knowledge with hardware pentensting before you get started; everything you need is in the chapters.
Build secure and reliable IoT applications for micro:bit and Raspberry Pi Pico by using Rust and Tock. One of the first Operating Systems written in Rust, Tock is designed to safely run multiple applications on low power devices, enabling you to build a secure foundation for IoT systems. It is an open-source OS that has recently gained popularity as companies such as Google[1] explore and integrate it into their products. This book guides you through the steps necessary to customize and integrate Tock into your devices. First, you'll explore the characteristics of Tock and how to run it on two of the most popular IoT platforms: micro:bit and Raspberry Pi Pico. You’ll also take a look at Rust and how to use it for building secure applications with Tock. The book focuses on the Tock kernel internals and presents the steps necessary to integrate new features. From simple drivers to the more complex asynchronous ones, you are provided with a detailed description of the Tock kernel API. Next, you'll review the Tock applications framework for C. Starting from simple Tock APIs to the more complex Inter-Process Communication system, this book provides a complete overview of the Tock application ecosystem. By taking a practical approach, Getting Started with Secure Embedded Systems provides a starting point for building a secure IoT foundation using the Tock Operating System. You will: Use Rust for embedded systems development Write applications and drivers for Tock Customize the Tock kernel for specific hardware platforms Set a solid base for building secure and reliable IoT applications Use Tock to ensure the security of your microcontrollers and integrate them into your projects Manage products that rely on Tock Who This Book Is For IoT system designers, developers, and integrators who are familiar with operating systems concepts. The book can also be suitable for people with less experience, who want to gain an overview of the latest hardware and software technologies related to building secure IoT systems.
Advanced DPA Theory and Practice provides a thorough survey of new physical leakages of embedded systems, namely the power and the electromagnetic emanations. The book presents a thorough analysis about leakage origin of embedded system. This book examines the systematic approach of the different aspects and advanced details about experimental setup for electromagnetic attack. The author discusses advanced statistical methods to successfully attack embedded devices such as high-order attack, template attack in principal subspaces, machine learning methods. The book includes theoretical framework to define side-channel based on two metrics: mutual information and success rate.
This easy-to- follow textbook/reference guides the reader through the creation of a fully functional embedded operating system, from its source code, in order to develop a deeper understanding of each component and how they work together. The text describes in detail the procedure for building the bootloader, kernel, filesystem, shared libraries, start-up scripts, configuration files and system utilities, to produce a GNU/Linux operating system. This fully updated second edition also includes new material on virtual machine technologies such as VirtualBox, Vagrant and the Linux container system Docker. Topics and features: presents an overview of the GNU/Linux system, introducing the components of the system, and covering aspects of process management, input/output and environment; discusses containers and the underlying kernel technology upon which they are based; provides a detailed examination of the GNU/Linux filesystem; explains how to build an embedded system under a virtual machine, and how to build an embedded system to run natively on an actual processor;introduces the concept of the compiler toolchain, and reviews the platforms BeagleBone and Raspberry Pi; describes how to build firmware images for devices running the Openwrt operating system. The hands-on nature and clearly structured approach of this textbook will appeal strongly to practically minded undergraduate and graduate level students, as well as to industry professionals involved in this area.