Download Free Practical Business Intelligence Book in PDF and EPUB Free Download. You can read online Practical Business Intelligence and write the review.

Learn to get the most out of your business data to optimize your business About This Book This book will enable and empower you to break free of the shackles of spreadsheets Learn to make informed decisions using the data at hand with this highly practical, comprehensive guide This book includes real-world use cases that teach you how analytics can be put to work to optimize your business Using a fictional transactional dataset in raw form, you'll work your way up to ultimately creating a fully-functional warehouse and a fleshed-out BI platform Who This Book Is For This book is for anyone who has wrangled with data to try to perform automated data analysis through visualizations for themselves or their customers. This highly-customized guide is for developers who know a bit about analytics but don't know how to make use of it in the field of business intelligence. What You Will Learn Create a BI environment that enables self-service reporting Understand SQL and the aggregation of data Develop a data model suitable for analytical reporting Connect a data warehouse to the analytic reporting tools Understand the specific benefits behind visualizations with D3.js, R, Tableau, QlikView, and Python Get to know the best practices to develop various reports and applications when using BI tools Explore the field of data analysis with all the data we will use for reporting In Detail Business Intelligence (BI) is at the crux of revolutionizing enterprise. Everyone wants to minimize losses and maximize profits. Thanks to Big Data and improved methodologies to analyze data, Data Analysts and Data Scientists are increasingly using data to make informed decisions. Just knowing how to analyze data is not enough, you need to start thinking how to use data as a business asset and then perform the right analysis to build an insightful BI solution. Efficient BI strives to achieve the automation of data for ease of reporting and analysis. Through this book, you will develop the ability to think along the right lines and use more than one tool to perform analysis depending on the needs of your business. We start off by preparing you for data analytics. We then move on to teach you a range of techniques to fetch important information from various databases, which can be used to optimize your business. The book aims to provide a full end-to-end solution for an environment setup that can help you make informed business decisions and deliver efficient and automated BI solutions to any company. It is a complete guide for implementing Business intelligence with the help of the most powerful tools like D3.js, R, Tableau, Qlikview and Python that are available on the market. Style and approach Packed with real-world examples, this pragmatic guide helps you polish your data and make informed decisions for your business. We cover both business and data analysis perspectives, blending theory and practical hands-on work so that you perceive data as a business asset.
Design, Build, and Manage High-Value BI Solutions with SQL Server 2005 In this book, two of Microsoft’s leading consultants illustrate how to use SQL Server 2005 Business Intelligence (BI) technologies to solve real-world problems in markets ranging from retail and finance to healthcare. Drawing on extensive personal experience with Microsoft’s strategic customers, John C. Hancock and Roger Toren offer unprecedented insight into BI systems design and step-by-step best practices for implementation, deployment, and management. Hancock and Toren introduce practical BI concepts and terminology and provide a concise primer on the Microsoft BI platform. Next, they turn to the heart of the book–constructing solutions. Each chapter-length case study begins with the customer’s business goals, and then guides you through detailed data modeling. The case studies show how to avoid the pitfalls that derail many BI projects. You’ll translate each model into a working system and learn how to deploy it into production, maintenance, and efficient operation. Whether you’re a decision-maker, architect, developer, or DBA, this book brings together all the knowledge you’ll need to derive maximum business value from any BI project. • Leverage SQL Server 2005 databases, Integration Services, Analysis Services, and Reporting Services • Build data warehouses and extend them to support very large databases • Design effective Analysis Services databases • Ensure the superior data quality your BI system needs • Construct advanced enterprise scorecard applications • Use data mining to segment customers, cross-sell, and increase the value of each transaction • Design real-time BI applications • Get hands-on practice with SQL Server 2005’s BI toolset
Learn the fundamental aspects of the business statistics, data mining, and machine learning techniques required to understand the huge amount of data generated by your organization. This book explains practical business analytics through examples, covers the steps involved in using it correctly, and shows you the context in which a particular technique does not make sense. Further, Practical Business Analytics using R helps you understand specific issues faced by organizations and how the solutions to these issues can be facilitated by business analytics. This book will discuss and explore the following through examples and case studies: An introduction to R: data management and R functions The architecture, framework, and life cycle of a business analytics project Descriptive analytics using R: descriptive statistics and data cleaning Data mining: classification, association rules, and clustering Predictive analytics: simple regression, multiple regression, and logistic regression This book includes case studies on important business analytic techniques, such as classification, association, clustering, and regression. The R language is the statistical tool used to demonstrate the concepts throughout the book. What You Will Learn • Write R programs to handle data • Build analytical models and draw useful inferences from them • Discover the basic concepts of data mining and machine learning • Carry out predictive modeling • Define a business issue as an analytical problem Who This Book Is For Beginners who want to understand and learn the fundamentals of analytics using R. Students, managers, executives, strategy and planning professionals, software professionals, and BI/DW professionals.
Geared toward IT management and business executives seeking to excel in business intelligence initiatives, this practical guide explores creating business alignment strategies that help prioritize business requirements, build organizational and cultural strategies, increase IT efficiency, and promote user adoption. Business intelligence, together with business analytics and performance management, eliminates information overload by organizing the massive amounts of information available in the modern enterprise. Addressing the challenges of business intelligence operations, this resource supports the goal of better business decision making and identifying unrealized opportunities. Each chapter includes a checklist of recommended approaches and a strategy overview template.
Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.
Aligning business intelligence (BI) infrastructure with strategy processes not only improves your organization's ability to respond to change, but also adds significant value to your BI infrastructure and development investments. Until now, there has been a need for a comprehensive book on business analysis for BI that starts with a macro view and
Between the high-level concepts of business intelligence and the nitty-gritty instructions for using vendors' tools lies the essential, yet poorly-understood layer of architecture, design and process. Without this knowledge, Big Data is belittled – projects flounder, are late and go over budget. Business Intelligence Guidebook: From Data Integration to Analytics shines a bright light on an often neglected topic, arming you with the knowledge you need to design rock-solid business intelligence and data integration processes. Practicing consultant and adjunct BI professor Rick Sherman takes the guesswork out of creating systems that are cost-effective, reusable and essential for transforming raw data into valuable information for business decision-makers. After reading this book, you will be able to design the overall architecture for functioning business intelligence systems with the supporting data warehousing and data-integration applications. You will have the information you need to get a project launched, developed, managed and delivered on time and on budget – turning the deluge of data into actionable information that fuels business knowledge. Finally, you'll give your career a boost by demonstrating an essential knowledge that puts corporate BI projects on a fast-track to success. - Provides practical guidelines for building successful BI, DW and data integration solutions. - Explains underlying BI, DW and data integration design, architecture and processes in clear, accessible language. - Includes the complete project development lifecycle that can be applied at large enterprises as well as at small to medium-sized businesses - Describes best practices and pragmatic approaches so readers can put them into action. - Companion website includes templates and examples, further discussion of key topics, instructor materials, and references to trusted industry sources.
Develop a custom, agile data warehousing and business intelligence architecture Empower your users and drive better decision making across your enterprise with detailed instructions and best practices from an expert developer and trainer. The Data Warehouse Mentor: Practical Data Warehouse and Business Intelligence Insights shows how to plan, design, construct, and administer an integrated end-to-end DW/BI solution. Learn how to choose appropriate components, build an enterprise data model, configure data marts and data warehouses, establish data flow, and mitigate risk. Change management, data governance, and security are also covered in this comprehensive guide. Understand the components of BI and data warehouse systems Establish project goals and implement an effective deployment plan Build accurate logical and physical enterprise data models Gain insight into your company's transactions with data mining Input, cleanse, and normalize data using ETL (Extract, Transform, and Load) techniques Use structured input files to define data requirements Employ top-down, bottom-up, and hybrid design methodologies Handle security and optimize performance using data governance tools Robert Laberge is the founder of several Internet ventures and a principle consultant for the IBM Industry Models and Assets Lab, which has a focus on data warehousing and business intelligence solutions.
You're intelligent, right? So you've already figured out that Business Intelligence can be pretty valuable in making the right decisions about your business. But you’ve heard at least a dozen definitions of what it is, and heard of at least that many BI tools. Where do you start? Business Intelligence For Dummies makes BI understandable! It takes you step by step through the technologies and the alphabet soup, so you can choose the right technology and implement a successful BI environment. You'll see how the applications and technologies work together to access, analyze, and present data that you can use to make better decisions about your products, customers, competitors, and more. You’ll find out how to: Understand the principles and practical elements of BI Determine what your business needs Compare different approaches to BI Build a solid BI architecture and roadmap Design, develop, and deploy your BI plan Relate BI to data warehousing, ERP, CRM, and e-commerce Analyze emerging trends and developing BI tools to see what else may be useful Whether you’re the business owner or the person charged with developing and implementing a BI strategy, checking out Business Intelligence For Dummies is a good business decision.
This book is about using business intelligence as a management information system for supporting managerial decision making. It concentrates primarily on practical business issues and demonstrates how to apply data warehousing and data analytics to support business decision making. This book progresses through a logical sequence, starting with data model infrastructure, then data preparation, followed by data analysis, integration, knowledge discovery, and finally the actual use of discovered knowledge. All examples are based on the most recent achievements in business intelligence. Finally this book outlines an overview of a methodology that takes into account the complexity of developing applications in an integrated business intelligence environment. This book is written for managers, business consultants, and undergraduate and postgraduates students in business administration.