Download Free Powerline Ampacity System Book in PDF and EPUB Free Download. You can read online Powerline Ampacity System and write the review.

Civilization's demands for electricity continue to grow, yet environmental, regulatory, and economic constraints often preclude the construction of new power plants and transmission lines. The challenge now faced by engineers, equipment manufacturers, and regulatory agencies is to find ways to maximize the capacity of existing power lines. Powerline Ampacity System is the first step in meeting that challenge. Along with developing a complete theory of transmission line ampacity, the author uses object-oriented modeling and expert rules to build a power line ampacity system. He describes new transmission line conductor technologies and power electronics FACTS devices that can take full advantage of a dynamic line rating system. He offers examples that clearly show the economic benefit of operating an interconnected transmission network that has a diverse mix of electricity generation sources. He also discusses - with examples - generator stability enhancement by dynamic line rating.
This book creates the emergence of disruptive technologies that have led to a significant change in the role of mathematics and statistics for problem solving, with the use of sophisticated software and hardware in solving complex systems and process. In the era of digital technology, mathematics and statistics need to be highly relevant to be able to cater for the needs of IR4.0 such as big data analytics, simulation, autonomous system, and cloud computing. Motivated by this development, a total of 26 chapters are contributed by respectable experts for this book. The main scope of the book is to conduct a new system of modeling and simulations on solving differential equations, nonlinear equations, energy, epidemiology, and risk assessment. This book is of interest for postgraduate students, researchers as well as other scientists who are working in numerical modeling and simulations based on efficient mathematical and statistical techniques.
Complete coverage of power line design and implementation "This text provides the essential fundamentals of transmission line design. It is a good blend of fundamental theory with practical design guidelines for overhead transmission lines, providing the basic groundwork for students as well as practicing power engineers, with material generally not found in one convenient book." IEEE Electrical Insultation Magazine Electrical Design of Overhead Power Transmission Lines discusses everything electrical engineering students and practicing engineers need to know to effectively design overhead power lines. Cowritten by experts in power engineering, this detailed guide addresses component selection and design, current IEEE standards, load-flow analysis, power system stability, statistical risk management of weather-related overhead line failures, insulation, thermal rating, and other essential topics. Clear learning objectives and worked examples that apply theoretical results to real-world problems are included in this practical resource. Electrical Design of Overhead Power Transmission Lines covers: AC circuits and sequence circuits of power networks Matrix methods in AC power system analysis Overhead transmission line parameters Modeling of transmission lines AC power-flow analysis using iterative methods Symmetrical and unsymmetrical faults Control of voltage and power flow Stability in AC networks High-voltage direct current (HVDC) transmission Corona and electric field effects of transmission lines Lightning performance of transmission lines Coordination of transmission line insulation Ampacity of overhead line conductors
Vols. 8-10 of the 1965-1984 master cumulation constitute a title index.
Since its inception, the Tutorial Guides in Electronic Engineering series has met with great success among both instructors and students. Designed for first and second year undergraduate courses, each text provides a concise list of objectives at the beginning of each chapter, key definitions and formulas highlighted in margin notes, and references to other texts in the series.This volume introduces the subject of power electronics. Giving relatively little consideration to device physics, the author first discusses the major power electronic devices and their characteristics, then focuses on the systems aspects of power electronics and on the range and diversity of applications. Several case studies, covering topics from high-voltage DC transmission to the development of a controller for domestic appliances, help place the material into a practical context. Each chapter also includes a number of worked examples for reinforcement, which are in turn supported by copious illustrations and end-of-chapter exercises.
The Flexible AC Transmission System (FACTS)--a new technology based on power electronics--offers an opportunity to enhance controllability, stability, and power transfer capability of ac transmission systems. Two pioneers in the field provide in-depth discussions on power semiconductor devices, voltage-sourced and current-sourced converters, specific FACTS controllers, and major FACTS applications in the U.S.