Download Free Potential Of Low Medium Enthalpy Geothermal Energy Book in PDF and EPUB Free Download. You can read online Potential Of Low Medium Enthalpy Geothermal Energy and write the review.

This book highlights the importance of geothermal energy by studying its potential either alone or in combination with solar energy, focusing on its industrial application. Its starting point is to identify in a thorough and precise manner the barriers that hinder the implementation of geothermal energy in Spain and the European Union and the measures to be taken to achieve its diffusion and regular use. Next, the book looks at how geothermal energy could contribute to this sector and to the desalination industry in particular, analysing a specific case in the south of Spain and extrapolating its results to a set of existing desalination plants in the Spanish Mediterranean with really interesting results in terms of economic amortisation and CO2 emissions avoided to the atmosphere. Beyond the desalination industry, this work demonstrates that almost 85% of the industrial processes of all industry in Spain can be carried out with very low, low and medium temperature geothermal resources and even applies its results to a set of existing solar plants, comparing in economic terms the results already obtained with those that would have been obtained if geothermal energy had been applied.
In many developing countries the exponentially growing electricity demand can be covered by using locally available, sustainable low-enthalpy geothermal resources (80-150 °C). Such low-enthalpy sources can make electricity generation more independent from oil imports or from the over-dependence on hydropower. Until now this huge energy resource has only been used by some developed countries like the USA, Iceland and New Zealand. The reason why low-enthalpy geothermal resources are not used for electricity generation is that there is still a misconception that low-enthalpy thermal fluids are fit only for direct application. The advancement of drilling technology, development of efficient heat exchangers and deployment of high sensitive binary fluids contribute to the useful application of this energy resource on a much wider scale. This book focuses on all aspects of low enthalpy geothermal thermal fluids. It will be an important source book for all scientists working on geothermal energy development. Specifically those involved in research in developing countries rich in such thermal resources, and for agencies involved in bilateral and international cooperation.
Geothermal Energy Systems The book encounters basic knowledge about geothermal technology for the utilization of geothermal resources. The book helps to understand the basic geology needed for the utilization of geothermal energy, shows up the practice to make access to geothermal reservoirs by drilling and the engineering of the reservoir by enhancing methods. The book describes the technology to make use of the Earth?s heat for direct use, power, and/or chill and gives boundary conditions for its economic and environmental utilization. A special focus is made on enhanced or engineered geothermal systems (EGS) which are based on concepts which bring a priori less productive reservoirs to an economic use. From the contents: Reservoir Definition Exploration Methods Drilling into Geothermal Reservoirs Enhancing Geothermal Reservoirs Geothermal Reservoir Simulation Energetic Use of EGS Reservoirs Economic Performance and Environmental Assessment Deployment of Enhanced Geothermal Systems plants and CO2-mitigation
* Clear and concise, information is analysed and presented in both a resource-by-resource and country-by-country approach * Comprehensive, the outlook for seventeen energy resources including all major fossil and renewable resources is evaluated* Free CD-Rom will help electronic navigation of this comprehensive resourceThe Survey of Energy Resources (SER) is a unique and authoritative publication produced by the World Energy Council every three years, since 1934. SER presents a comprehensive global picture of resource availability, production and consumption levels, technological developments and outlook for seventeen energy resources, including all major fossil and renewable resources. Each resource is covered in a separate chapter which comprises a commentary by a leading expert in the field, data tables and country notes. The information contained is the best available from a wide variety of sources. The SER is published every three years in line with WEC's work cycle, culminating in publication at the World Energy Congress.The 20th edition of SER will be published at the time of the 19th World Energy Congress (Sydney, September 2004).* Provides global and country specific comprehensive information and data* Provides authoritative information in a compact and user-friendly format * Best available data from a wide variety of sources
Ron DiPippo, Professor Emeritus at the University of Massachusetts Dartmouth, is a world-regarded geothermal expert. This single resource covers all aspects of the utilization of geothermal energy for power generation from fundamental scientific and engineering principles. The thermodynamic basis for the design of geothermal power plants is at the heart of the book and readers are clearly guided on the process of designing and analysing the key types of geothermal energy conversion systems. Its practical emphasis is enhanced by the use of case studies from real plants that increase the reader's understanding of geothermal energy conversion and provide a unique compilation of hard-to-obtain data and experience. An important new chapter covers Environmental Impact and Abatement Technologies, including gaseous and solid emissions; water, noise and thermal pollutions; land usage; disturbance of natural hydrothermal manifestations, habitats and vegetation; minimisation of CO2 emissions and environmental impact assessment.The book is illustrated with over 240 photographs and drawings. Nine chapters include practice problems, with solutions, which enable the book to be used as a course text. Also includes a definitive worldwide compilation of every geothermal power plant that has operated, unit by unit, plus a concise primer on the applicable thermodynamics.* Engineering principles are at the heart of the book, with complete coverage of the thermodynamic basis for the design of geothermal power systems* Practical applications are backed up by an extensive selection of case studies that show how geothermal energy conversion systems have been designed, applied and exploited in practice* World renowned geothermal expert DiPippo has including a new chapter on Environmental Impact and Abatement Technology in this new edition
Since nearly 50 % of Europe's energy demand is in the heating and cooling sector, it is expected that geothermal energy will play an important role in the transition to a decarbonized energy system. However, deep geothermal energy is currently harvested mainly from areas with very favorable geothermal conditions. As these areas are geographically limited, the use of geothermal energy in less favorable regions is essential for unleashing the full potential of geothermal energy, since they make up the majority of the total geothermal potential in Central Europe. Motivated by the growing interest in deep geothermal energy among, e.g., energy companies and communities, this text reviews the state of the art in deep geothermal energy with focus on direct heating in geothermally less favorable regions. It provides an overview of technologies used to generate heat from the deep underground and discusses main technical and non-technical risks associated with deep geothermal projects. The text addresses readers with an interest in geothermal energy but does not require a background in geoscience or engineering sciences. It is suitable as textbook for Geothermal Energy courses for undergraduate students from different disciplines.
Utilization of Thermal Potential of Abandoned Wells: Fundamentals, Applications and Research is a lucid treatment of the fundamental concepts related to the energy harvesting of abandoned wells. The book provides a journey through recent technological developments to harvest energy from abandoned geothermal wells and allows the reader to view the process from a thermodynamic and numerical modeling perspective. Various applications and future prospects are also discussed to help inform reader's future work and research. Students, researchers and engineers will gain a thorough understanding on how to harvest energy from abandoned geothermal wells, particularly to make sound thermodynamic and economic evaluations. System designers and others engaged in the energy sector will understand how to design and choose the most appropriate technology, how to determine its efficiency, monitor the facility, and how to make informed physical and economical decisions for necessary improvements and environmental assessments. - Logically works through fundamentals, with various examples throughout - Provides instruction to simulate thermodynamic models and design efficient systems - Presents feasibility studies and applications