Download Free Post Genomic Cardiology Book in PDF and EPUB Free Download. You can read online Post Genomic Cardiology and write the review.

In this second edition of Post-Genomic Cardiology, developing and new technologies such as translational genomics, next generation sequencing (NGS), bioinformatics, and systems biology in molecular cardiology are assessed in light of their therapeutic potential. As new methods of mutation screening emerge, both for the genome and for the "epigenome, comprehensive understanding of the many mutations that underlie cardiovascular diseases and adverse drug reactions is within our reach. This book, written by respected cardiologist José Marín-García, features discussion on the Hap-Map: the largest international effort to date aiming to define the differences between our individual genomes. This unique reference further reviews and investigates genome sequences from our evolutionary relatives that could help us decipher the signals of genes, and offers a comprehensive and critical evaluation of regulatory elements from the complicated network of the background DNA. - Offers updated discussion of cutting-edge molecular techniques including new genomic sequencing / NGS / Hap-Map / bioinformatics / systems biology approaches - Analyzes mitochondria dynamics and their role in cardiac dysfunction, up-to-date analysis of cardio-protection, and cardio-metabolic syndrome - Presents recent translational studies, gene therapy, transplantation of stem cells, and pharmacological treatments in CVDs
This title reflects the exponential growth in the knowledge and information on this subject and defines the extensive clinical translation of cardiovascular genetics and genomics in clinical practice. This concise, clinically oriented text is targeted at a broad range of clinicians who manage patients and families with a wide range of heterogeneous inherited cardiovascular conditions. Cardiovascular Genetics and Genomics: Principles and Clinical Practice includes a concise and clear account on selected topics written by a team of leading experts on clinical cardiovascular genetics. Each chapter include key information to assist the clinician and case histories have been incorporated to reflect contemporary practice in clinical cardiovascular genetics and genomics. Therefore this will be of key importance to all professionals working in the discipline, from clinicians and trainees in cardiology, cardiac surgery, electrophysiology, immunology through geneticists, nursing staff and those involved in precision medicine.
In this book/CD-ROM package, Raizada (physiology and functional genomics, University of Florida) brings together scientists and clinicians from around the world to explore recent molecular approaches to understanding the cardiovascular system in health and disease. Contributors cover disease states ranging from vascular and cardiac dysfunction to stroke and hypertension, and describe methods for identifying the genes that cause susceptibility to cardiovascular diseases. The CD-ROM contains an electronic version of the book that can be used on a PC or PDA. The audience for the book includes cardiovascular researchers, clinical fellows, and pharmacologists. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com).
Preceded by Genomics and clinical medicine / edited by Dhavendra Kumar. [First edition]. 2008.
Inherited Cardiac Disease provides healthcare specialists involved in the diagnosis and treatment of inherited cardiovascular disorders with a clinically relevant summary of genetic diseases and readily accessible information that can be used in everyday practice.
The Social Security Administration (SSA) uses a screening tool called the Listing of Impairments to identify claimants who are so severely impaired that they cannot work at all and thus immediately qualify for benefits. In this report, the IOM makes several recommendations for improving SSA's capacity to determine disability benefits more quickly and efficiently using the Listings.
One of the most time-consuming tasks in clinical medicine is seeking the opinions of specialist colleagues. There is a pressure not only to make referrals appropriate but also to summarize the case in the language of the specialist. This book explains basic physiologic and pathophysiologic mechanisms of cardiovascular disease in a straightforward manner, gives guidelines as to when referral is appropriate, and, uniquely, explains what the specialist is likely to do. It is ideal for any hospital doctor, generalist, or even senior medical student who may need a cardiology opinion, or for that ma.
In The Genome Odyssey, Dr. Euan Ashley, Stanford professor of medicine and genetics, brings the breakthroughs of precision medicine to vivid life through the real diagnostic journeys of his patients and the tireless efforts of his fellow doctors and scientists as they hunt to prevent, predict, and beat disease. Since the Human Genome Project was completed in 2003, the price of genome sequencing has dropped at a staggering rate. It’s as if the price of a Ferrari went from $350,000 to a mere forty cents. Through breakthroughs made by Dr. Ashley’s team at Stanford and other dedicated groups around the world, analyzing the human genome has decreased from a heroic multibillion dollar effort to a single clinical test costing less than $1,000. For the first time we have within our grasp the ability to predict our genetic future, to diagnose and prevent disease before it begins, and to decode what it really means to be human. In The Genome Odyssey, Dr. Ashley details the medicine behind genome sequencing with clarity and accessibility. More than that, with passion for his subject and compassion for his patients, he introduces readers to the dynamic group of researchers and doctor detectives who hunt for answers, and to the pioneering patients who open up their lives to the medical community during their search for diagnoses and cures. He describes how he led the team that was the first to analyze and interpret a complete human genome, how they broke genome speed records to diagnose and treat a newborn baby girl whose heart stopped five times on the first day of her life, and how they found a boy with tumors growing inside his heart and traced the cause to a missing piece of his genome. These patients inspire Dr. Ashley and his team as they work to expand the boundaries of our medical capabilities and to envision a future where genome sequencing is available for all, where medicine can be tailored to treat specific diseases and to decode pathogens like viruses at the genomic level, and where our medical system as we know it has been completely revolutionized.
Cardiac arrest can strike a seemingly healthy individual of any age, race, ethnicity, or gender at any time in any location, often without warning. Cardiac arrest is the third leading cause of death in the United States, following cancer and heart disease. Four out of five cardiac arrests occur in the home, and more than 90 percent of individuals with cardiac arrest die before reaching the hospital. First and foremost, cardiac arrest treatment is a community issue - local resources and personnel must provide appropriate, high-quality care to save the life of a community member. Time between onset of arrest and provision of care is fundamental, and shortening this time is one of the best ways to reduce the risk of death and disability from cardiac arrest. Specific actions can be implemented now to decrease this time, and recent advances in science could lead to new discoveries in the causes of, and treatments for, cardiac arrest. However, specific barriers must first be addressed. Strategies to Improve Cardiac Arrest Survival examines the complete system of response to cardiac arrest in the United States and identifies opportunities within existing and new treatments, strategies, and research that promise to improve the survival and recovery of patients. The recommendations of Strategies to Improve Cardiac Arrest Survival provide high-priority actions to advance the field as a whole. This report will help citizens, government agencies, and private industry to improve health outcomes from sudden cardiac arrest across the United States.
In the four pages committed to a discussion of myocardial infarction in the first edition of Harrison’s Principles of Internal Medicine, published in 1950, there was no mention of use of the laboratory for management of patients. Thirty years later, when the first edition of Braunwald’s Heart Disease, A Textbook of Cardiovascular Medicine was published, 2 out of the 1943 pages in the text contained a discussion of the laboratory examinations in acute myocardial infarction. Our knowledge base of the multitude of ways that physicians can and should use the clinical chemistry laboratory has expanded dramatically since these classic texts were published. The nomenclature has changed: terms such as “cardiac enzymes” have given way to “cardiac biomarkers. ” The number of assays has multiplied, and the operating characteristics of available assays are impr- ing at a gratifying but dizzying rate. We now use biomarkers to diagnose cardiovascular diseases and also to frame our treatment strategies. Thus, there is a clear need for a scholarly compilation of the state of the art of cardiac biomarkers. Dr. David Morrow has expertly edited an authoritative book that answers this need. The 34 chapters in Cardiovascular Biomarkers: Pathophysiology and Disease Mana- ment were written by a group of individuals who are internationally recognized thought leaders and experts in clinical and laboratory medicine.