Download Free Positive Solutions To Indefinite Problems Book in PDF and EPUB Free Download. You can read online Positive Solutions To Indefinite Problems and write the review.

This book is devoted to the study of positive solutions to indefinite problems. The monograph intelligibly provides an extensive overview of topological methods and introduces new ideas and results. Sticking to the one-dimensional setting, the author shows that compelling and substantial research can be obtained and presented in a penetrable way. In particular, the book focuses on second order nonlinear differential equations. It analyzes the Dirichlet, Neumann and periodic boundary value problems associated with the equation and provides existence, nonexistence and multiplicity results for positive solutions. The author proposes a new approach based on topological degree theory that allows him to answer some open questions and solve a conjecture about the dependence of the number of positive solutions on the nodal behaviour of the nonlinear term of the equation. The new technique developed in the book gives, as a byproduct, infinitely many subharmonic solutions and globally defined positive solutions with chaotic behaviour. Furthermore, some future directions for research, open questions and interesting, unexplored topics of investigation are proposed.
The work of Jean Mawhin covers different aspects of the theory of differential equations and nonlinear analysis. On the occasion of his sixtieth birthday, a group of mathematicians gathered in Sevilla, Spain, in April 2003 to honor his mathematical achievements as well as his unique personality. This book provides an extraordinary view of a number of ground-breaking ideas and methods in nonlinear analysis and differential equations. List of Contributors: H Amann, M Delgado, J L Gimez, A M Krasnoselskij, E Liz, J Mawhin, P Quittner, B P Rynne, L Sanchez, K Schmitt, J R Ward, F Zanolin, and others. Contents: A Priori Bounds for the Positive Solutions of Super-Linear Indefinite Weighted Elliptic Problems (S Cano-Casanova); Parametric Excitation in a Predator-Prey Model (A C Casal & A S Somolinos); Reasons for a Homage (M Delgado); Bifurcation through Higher Order Terms for Problems at Resonance (M Garc a-Huidobro et al.); Malthus, Verhulst, and the Metasolutions (J Lpez-Gmez); Axiomatizing the Algebraic Multiplicity (C Mora-Corral); Instability of Periodic Solutions Obtained by Minimization (R Ortega); Periodic Solutions of Second Order Equations OCo A Variational Approach (K Schmitt); Some Indefinite Nonlinear Eigenvalue Problems (A Suirez); and other papers. Readership: Researchers in the fields of ordinary differential equations, partial differential equations and nonlinear analysis."
topics. However, only a modest preliminary knowledge is needed. In the first chapter, where we introduce an important topological concept, the so-called topological degree for continuous maps from subsets ofRn into Rn, you need not know anything about functional analysis. Starting with Chapter 2, where infinite dimensions first appear, one should be familiar with the essential step of consider ing a sequence or a function of some sort as a point in the corresponding vector space of all such sequences or functions, whenever this abstraction is worthwhile. One should also work out the things which are proved in § 7 and accept certain basic principles of linear functional analysis quoted there for easier references, until they are applied in later chapters. In other words, even the 'completely linear' sections which we have included for your convenience serve only as a vehicle for progress in nonlinearity. Another point that makes the text introductory is the use of an essentially uniform mathematical language and way of thinking, one which is no doubt familiar from elementary lectures in analysis that did not worry much about its connections with algebra and topology. Of course we shall use some elementary topological concepts, which may be new, but in fact only a few remarks here and there pertain to algebraic or differential topological concepts and methods.
ICM 2002 Satellite Conference on Nonlinear Analysis was held in the period: August 1418, 2002 at Taiyuan, Shanxi Province, China. This conference was organized by Mathematical School of Peking University, Academy of Mathematics and System Sciences of Chinese Academy of Sciences, Mathematical school of Nankai University, and Department of Mathematics of Shanxi University, and was sponsored by Shanxi Province Education Committee, Tian Yuan Mathematics Foundation, and Shanxi University. 166 mathematicians from 21 countries and areas in the world attended the conference. 53 invited speakers and 30 contributors presented their lectures. This conference aims at an overview of the recent development in nonlinear analysis. It covers the following topics: variational methods, topological methods, fixed point theory, bifurcations, nonlinear spectral theory, nonlinear Schrvdinger equations, semilinear elliptic equations, Hamiltonian systems, central configuration in N-body problems and variational problems arising in geometry and physics.
ICM 2002 Satellite Conference on Nonlinear Analysis was held in the period: August 14-18, 2002 at Taiyuan, Shanxi Province, China. This conference was organized by Mathematical School of Peking University, Academy of Mathematics and System Sciences of Chinese Academy of Sciences, Mathematical school of Nankai University, and Department of Mathematics of Shanxi University, and was sponsored by Shanxi Province Education Committee, Tian Yuan Mathematics Foundation, and Shanxi University.166 mathematicians from 21 countries and areas in the world attended the conference. 53 invited speakers and 30 contributors presented their lectures. This conference aims at an overview of the recent development in nonlinear analysis. It covers the following topics: variational methods, topological methods, fixed point theory, bifurcations, nonlinear spectral theory, nonlinear Schrödinger equations, semilinear elliptic equations, Hamiltonian systems, central configuration in N-body problems and variational problems arising in geometry and physics.
This volume is dedicated to our teacher and friend Hans Triebel. The core of the book is based on lectures given at the International Conference "Function Spaces, Differential Operators and Nonlinear Analysis" (FSDONA--01) held in Teistungen, Thuringia / Germany, from June 28 to July 4,2001, in honour of his 65th birthday. This was the fifth in a series of meetings organised under the same name by scientists from Finland (Helsinki, Oulu) , the Czech Republic (Prague, Plzen) and Germany (Jena) promoting the collaboration of specialists in East and West, working in these fields. This conference was a very special event because it celebrated Hans Triebel's extraordinary impact on mathematical analysis. The development of the mod ern theory of function spaces in the last 30 years and its application to various branches in both pure and applied mathematics is deeply influenced by his lasting contributions. In a series of books Hans Triebel has given systematic treatments of the theory of function spaces from different points of view, thus revealing its interdependence with interpolation theory, harmonic analysis, partial differential equations, nonlinear operators, entropy, spectral theory and, most recently, anal ysis on fractals. The presented collection of papers is a tribute to Hans Triebel's distinguished work. The book is subdivided into three parts: • Part I contains the two invited lectures by O.V. Besov (Moscow) and D.E. Edmunds (Sussex) having a survey character and honouring Hans Triebel's contributions.
A collection of self contained state-of-the art surveys. The authors have made an effort to achieve readability for mathematicians and scientists from other fields, for this series of handbooks to be a new reference for research, learning and teaching. - Written by well-known experts in the field - Self contained volume in series covering one of the most rapid developing topics in mathematics - Informed and thoroughly updated for students, academics and researchers
The work of Jean Mawhin covers different aspects of the theory of differential equations and nonlinear analysis. On the occasion of his sixtieth birthday, a group of mathematicians gathered in Sevilla, Spain, in April 2003 to honor his mathematical achievements as well as his unique personality.This book provides an extraordinary view of a number of ground-breaking ideas and methods in nonlinear analysis and differential equations.List of Contributors: H Amann, M Delgado, J L Gámez, A M Krasnoselskij, E Liz, J Mawhin, P Quittner, B P Rynne, L Sanchez, K Schmitt, J R Ward, F Zanolin, and others.
This book consists of survey and research articles expanding on the theme of the “International Conference on Reaction-Diffusion Systems and Viscosity Solutions”, held at Providence University, Taiwan, during January 3-6, 2007. It is a carefully selected collection of articles representing the recent progress of some important areas of nonlinear partial differential equations. The book is aimed for researchers and postgraduate students who want to learn about or follow some of the current research topics in nonlinear partial differential equations. The contributors consist of international experts and some participants of the conference, including Nils Ackermann (Mexico), Chao-Nien Chen (Taiwan), Yihong Du (Australia), Alberto Farina (France), Hitoshi Ishii (Japan), N Ishimura (Japan), Shigeaki Koike (Japan), Chu-Pin Lo (Taiwan), Peter Polacik (USA), Kunimochi Sakamoto (Japan), Richard Tsai (USA), Mingxin Wang (China), Yoshio Yamada (Japan), Eiji Yanagida (Japan), and Xiao-Qiang Zhao (Canada).
This book consists of nine papers covering a number of basic ideas, concepts, and methods of nonlinear analysis, as well as some current research problems. Thus, the reader is introduced to the fascinating theory around Brouwer's fixed point theorem, to Granas' theory of topological transversality, and to some advanced techniques of critical point theory and fixed point theory. Other topics include discontinuous differential equations, new results of metric fixed point theory, robust tracker design problems for various classes of nonlinear systems, and periodic solutions in computer virus propagation models.