Download Free Positioning And Navigation In Complex Environments Book in PDF and EPUB Free Download. You can read online Positioning And Navigation In Complex Environments and write the review.

The limitations of satellites create a large gap in assistive directional technologies, especially indoors. The methods and advances in alternate directional technologies is allowing for new systems to fill the gaps caused by the limitations of GPS systems. Positioning and Navigation in Complex Environments is a critical scholarly resource that examines the methodologies and advances in technologies that allow for indoor navigation. Featuring insight on a broad scope of topics, such as multipath mitigation, Global Navigation Satellite System (GNSS), and multi-sensor integration, this book is directed toward data scientists, engineers, government agencies, researchers, and graduate-level students.
Due to the widespread use of navigation systems for wayfinding and navigation in the outdoors, researchers have devoted their efforts in recent years to designing navigation systems that can be used indoors. This book is a comprehensive guide to designing and building indoor wayfinding and navigation systems. It covers all types of feasible sensors (for example, Wi-Fi, A-GPS), discussing the level of accuracy, the types of map data needed, the data sources, and the techniques for providing routes and directions within structures.
Covers the latest developments in PNT technologies, including integrated satellite navigation, sensor systems, and civil applications Featuring sixty-four chapters that are divided into six parts, this two-volume work provides comprehensive coverage of the state-of-the-art in satellite-based position, navigation, and timing (PNT) technologies and civilian applications. It also examines alternative navigation technologies based on other signals-of-opportunity and sensors and offers a comprehensive treatment on integrated PNT systems for consumer and commercial applications. Volume 1 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications contains three parts and focuses on the satellite navigation systems, technologies, and engineering and scientific applications. It starts with a historical perspective of GPS development and other related PNT development. Current global and regional navigation satellite systems (GNSS and RNSS), their inter-operability, signal quality monitoring, satellite orbit and time synchronization, and ground- and satellite-based augmentation systems are examined. Recent progresses in satellite navigation receiver technologies and challenges for operations in multipath-rich urban environment, in handling spoofing and interference, and in ensuring PNT integrity are addressed. A section on satellite navigation for engineering and scientific applications finishes off the volume. Volume 2 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications consists of three parts and addresses PNT using alternative signals and sensors and integrated PNT technologies for consumer and commercial applications. It looks at PNT using various radio signals-of-opportunity, atomic clock, optical, laser, magnetic field, celestial, MEMS and inertial sensors, as well as the concept of navigation from Low-Earth Orbiting (LEO) satellites. GNSS-INS integration, neuroscience of navigation, and animal navigation are also covered. The volume finishes off with a collection of work on contemporary PNT applications such as survey and mobile mapping, precision agriculture, wearable systems, automated driving, train control, commercial unmanned aircraft systems, aviation, and navigation in the unique Arctic environment. In addition, this text: Serves as a complete reference and handbook for professionals and students interested in the broad range of PNT subjects Includes chapters that focus on the latest developments in GNSS and other navigation sensors, techniques, and applications Illustrates interconnecting relationships between various types of technologies in order to assure more protected, tough, and accurate PNT Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications will appeal to all industry professionals, researchers, and academics involved with the science, engineering, and applications of position, navigation, and timing technologies. pnt21book.com
This book features the latest theoretical results and techniques in the field of guidance, navigation, and control (GNC) of vehicles and aircrafts. It covers a wide range of topics, including but not limited to, intelligent computing communication and control; new methods of navigation, estimation and tracking; control of multiple moving objects; manned and autonomous unmanned systems; guidance, navigation and control of miniature aircraft; and sensor systems for guidance, navigation and control etc. Presenting recent advances in the form of illustrations, tables, and text, it also provides detailed information of a number of the studies, to offer readers insights for their own research. In addition, the book addresses fundamental concepts and studies in the development of GNC, making it a valuable resource for both beginners and researchers wanting to further their understanding of guidance, navigation, and control.
Context-awareness is one of the drivers of the ubiquitous computing paradigm. Well-designed context modeling and context retrieval approaches are key p- requisites in any context-aware system. Location is one of the primary aspects of all major context models — together with time, identity and activity. From the technical side, sensing, fusing and distributing location and other context information is as important as providing context-awareness to applications and services in pervasive systems. Thematerialsummarizedinthisvolumewasselectedforthe1stInternational Workshop on Location- and Context-Awareness (LoCA 2005) held in coope- tion with the 3rd International Conference on Pervasive Computing 2005. The workshop was organized by the Institute of Communications and Navigation of the German Aerospace Center (DLR) in Oberpfa?enhofen, and the Mobile and Distributed Systems Group of the University of Munich. During the workshop, novel positioning algorithms and location sensing te- niques were discussed, comprising not only enhancements of singular systems, like positioning in GSM or WLAN, but also hybrid technologies, such as the integration of global satellite systems with inertial positioning. Furthermore, - provements in sensor technology, as well as the integration and fusion of sensors, were addressed both on a theoretical and on an implementation level. Personal and con?dential data, such as location data of users, have p- found implications for personal information privacy. Thus privacy protection, privacy-oriented location-aware systems, and how privacy a?ects the feasibility and usefulness of systems were also addressed in the workshop.
This book discusses the recent advances in natural computation, fuzzy systems and knowledge discovery. Presenting selected, peer-reviewed papers from the 15th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2019), held in Kunming, China, from 20 to 22 July 2019, it is a useful resource for researchers, including professors and graduate students, as well as R&D staff in industry.
This volume consists of papers presented at the 2014 International Symposium on Systems and Computer Technology (ISSCT 2014, Shanghai, China, 15-17 November 2014). The demand for systems and informatics have been constantly increasing, as more and more computer applications have been built. Great efforts have been made to improve the state of the a
For generations, the map has been central to how societies function all over the world. Cybercartography is a new paradigm for maps and mapping in the information era. Defined as "the organization, presentation, analysis and communication of spatially referenced information on a wide variety of topics of interest to society, cybercartography is presented in an interactive, dynamic, multisensory format with the use of multimedia and multimodal interfaces. Cybercartography: Theory and Practice examines the major elements of cybercartography and emphasizes the importance of interaction between theory and practice in developing a paradigm which moves beyond the concept of Geographic Information Systems and Geographical Information Science. It argues for the centrality of the map as part of an integrated information, communication, and analytical package.This volume is a result of a multidisciplinary team effort and has benefited from the input of partners from government, industry and other organizations. The international team reports on major original cybercartographic research and practice from a variety of disciplinary perspectives, including the humanities, social sciences including human factors psychology, cybernetics, English literature, cultural mediation, cartography, and geography. This new synthesis has intrinsic value for industries, the general public, and the relationships between mapping and the development of user-centered multimedia interfaces.* Discusses the centrality of the map and its importance in the information era * Provides an interdisciplinary approach with contributions from psychology, music, and language and literature * Describes qualitative and quantitative aspects of cybercartography and the importance of societal context in the interaction between theory and practice* Contains an interactive CD-Rom containing color images, links to websites, plus other important information to capture the dynamic and interactive elements of cybercartography
A text that makes the mathematical underpinnings of robot motion accessible and relates low-level details of implementation to high-level algorithmic concepts. Robot motion planning has become a major focus of robotics. Research findings can be applied not only to robotics but to planning routes on circuit boards, directing digital actors in computer graphics, robot-assisted surgery and medicine, and in novel areas such as drug design and protein folding. This text reflects the great advances that have taken place in the last ten years, including sensor-based planning, probabalistic planning, localization and mapping, and motion planning for dynamic and nonholonomic systems. Its presentation makes the mathematical underpinnings of robot motion accessible to students of computer science and engineering, rleating low-level implementation details to high-level algorithmic concepts.