Download Free Porous Polymer Networks Book in PDF and EPUB Free Download. You can read online Porous Polymer Networks and write the review.

The main aim of the book is to assimilate the fundamental know how about the synthesis, properties as well as applications of a large range of recently developed and commercially viable porous polymer networks.
This book gathers the various aspects of the porous polymer field into one volume. It not only presents a fundamental description of the field, but also describes the state of the art for such materials and provides a glimpse into the future. Emphasizing a different aspect of the ongoing research and development in porous polymers, the book is divided into three sections: Synthesis, Characterization, and Applications. The first part of each chapter presents the basic scientific and engineering principles underlying the topic, while the second part presents the state of the art results based on those principles. In this fashion, the book connects and integrates topics from seemingly disparate fields, each of which embodies different aspects inherent in the diverse field of porous polymeric materials.
A comprehensive overview of different porous polymer systems focusing on structure design, synthesis method and properties.
This book gathers the various aspects of the porous polymer field into one volume. It not only presents a fundamental description of the field, but also describes the state of the art for such materials and provides a glimpse into the future. Emphasizing a different aspect of the ongoing research and development in porous polymers, the book is divided into three sections: Synthesis, Characterization, and Applications. The first part of each chapter presents the basic scientific and engineering principles underlying the topic, while the second part presents the state of the art results based on those principles. In this fashion, the book connects and integrates topics from seemingly disparate fields, each of which embodies different aspects inherent in the diverse field of porous polymeric materials.
The IUPAC system of polymer nomenclature has aided the generation of unambiguous names that re ect the historical development of chemistry. However, the explosion in the circulation of information and the globalization of human activities mean that it is now necessary to have a common language for use in legal situations, patents, export-import regulations, and environmental health and safety information. Rather than recommending a ‘unique name’ for each structure, rules have been developed for assigning ‘preferred IUPAC names’, while continuing to allow alternatives in order to preserve the diversity and adaptability of nomenclature. Compendium of Polymer Terminology and Nomenclature is the only publication to collect the most important work on this subject into a single volume. It serves as a handy compendium for scientists and removes the need for time consuming literature searches. One of a series issued by the International Union of Pure and Applied Chemistry (IUPAC), it covers the terminology used in many and varied aspects of polymer science as well as the nomenclature of several di erent types of polymer including regular and irregular single-strand organic polymers, copolymers and regular double-strand (ladder and spiro) organic polymers.
Porous Polymer Science and Applications aims to provide recent developments and advances in synthesis, tuning parameters, and applications of porous polymers. This book brings together reviews written by highly accomplished panels of experts working in the area of porous polymers. It encompasses basic studies and addresses topics of novel issues concerning the applications of porous polymers. Chapter topics span basic studies, novel issues, and applications addressing all aspects in a one-stop reference on porous polymers. Applications discussed include catalysis, gas storage, energy and environmental sectors making this an invaluable guide for students, professors, scientists and R&D industrial experts working in the field of material science and engineering and particularly energy conversion and storage. Additional features include: Provides a comprehensive introduction to porous polymers addressing design, synthesis, structure, properties and characterization. Covers task-specific applications of porous polymers. Explores the advantages and opportunities of these materials for most major fields of science and engineering. Outlines novel research areas and potential development and expansion areas.
Focusing on the applied and basic aspects of confined liquid crystals, this book provides a current treatise of the subject matter and places it in the broader context of electrooptic applications. The book takes an interdisciplinary approach to the
Covers a wide range of advanced materials and technologies for CO2 capture As a frontier research area, carbon capture has been a major driving force behind many materials technologies. This book highlights the current state-of-the-art in materials for carbon capture, providing a comprehensive understanding of separations ranging from solid sorbents to liquid sorbents and membranes. Filled with diverse and unconventional topics throughout, it seeks to inspire students, as well as experts, to go beyond the novel materials highlighted and develop new materials with enhanced separations properties. Edited by leading authorities in the field, Materials for Carbon Capture offers in-depth chapters covering: CO2 Capture and Separation of Metal-Organic Frameworks; Porous Carbon Materials: Designed Synthesis and CO2 Capture; Porous Aromatic Frameworks for Carbon Dioxide Capture; and Virtual Screening of Materials for Carbon Capture. Other chapters look at Ultrathin Membranes for Gas Separation; Polymeric Membranes; Carbon Membranes for CO2 Separation; and Composite Materials for Carbon Captures. The book finishes with sections on Poly(amidoamine) Dendrimers for Carbon Capture and Ionic Liquids for Chemisorption of CO2 and Ionic Liquid-Based Membranes. A comprehensive overview and survey of the present status of materials and technologies for carbon capture Covers materials synthesis, gas separations, membrane fabrication, and CO2 removal to highlight recent progress in the materials and chemistry aspects of carbon capture Allows the reader to better understand the challenges and opportunities in carbon capture Edited by leading experts working on materials and membranes for carbon separation and capture Materials for Carbon Capture is an excellent book for advanced students of chemistry, materials science, chemical and energy engineering, and early career scientists who are interested in carbon capture. It will also be of great benefit to researchers in academia, national labs, research institutes, and industry working in the field of gas separations and carbon capture.
This book, Organic Polymers, covers aspects that are of immediate concern to a new entrant to the field of polymers. Taken as a whole, these eight chapters aim to help the readers easily assimilate other specialized and exhaustive treatises on the subject. Topics dealing with the chemistry and technology of polymers are presented in a careful and logical manner so as to provide an easy and enjoyable read. Several examples and analogies are included so to make the main concepts easy to follow and tables and figures are included so that the book can serve, to a limited extent, as a hand book dealing with polysaccharides with different parameters. This book is meant for students studying polysaccharides and those working on graft copolymers and other allied polymer industries but without a formal educational background in organic polymers.
Hypercrosslinked network polymers present a new class of polymeric materials with very wide application possibilities, including adsorption technology, ion exchange, HPLC, analytical chemistry, nanotechnology (nanocomposites), medical polymers - First book describing the theory, practice of preparation and use of polymeric adsorbing materials with the emphasis on new hypercrosslinked polystyrene-type polymers - Written by the originators of the concept of hypercrosslinked polymers - Complex phenomena are explained by appealing to common sense, analogies and well-known effects, rather than complex mathematical treatment and computer modelling - Reviews many Russian, German and even Czech language publications - Contains numerous experimental data in the form of Figures and Tables