Download Free Polytopes Rings And K Theory Book in PDF and EPUB Free Download. You can read online Polytopes Rings And K Theory and write the review.

This book examines interactions of polyhedral discrete geometry and algebra. What makes this book unique is the presentation of several central results in all three areas of the exposition - from discrete geometry, to commutative algebra, and K-theory.
This volume contains the proceedings of the ICM 2018 satellite school and workshop K-theory conference in Argentina. The school was held from July 16–20, 2018, in La Plata, Argentina, and the workshop was held from July 23–27, 2018, in Buenos Aires, Argentina. The volume showcases current developments in K-theory and related areas, including motives, homological algebra, index theory, operator algebras, and their applications and connections. Papers cover topics such as K-theory of group rings, Witt groups of real algebraic varieties, coarse homology theories, topological cyclic homology, negative K-groups of monoid algebras, Milnor K-theory and regulators, noncommutative motives, the classification of C∗-algebras via Kasparov's K-theory, the comparison between full and reduced C∗-crossed products, and a proof of Bott periodicity using almost commuting matrices.
The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.
This proceedings volume contains articles related to the research presented at the 2019 Simons Symposium on p-adic Hodge theory. This symposium was focused on recent developments in p-adic Hodge theory, especially those concerning non-abelian aspects This volume contains both original research articles as well as articles that contain both new research as well as survey some of these recent developments.
This volume presents some of the research topics discussed at the 2014-2015 Annual Thematic Program Discrete Structures: Analysis and Applications at the Institute for Mathematics and its Applications during Fall 2014, when combinatorics was the focus. Leading experts have written surveys of research problems, making state of the art results more conveniently and widely available. The three-part structure of the volume reflects the three workshops held during Fall 2014. In the first part, topics on extremal and probabilistic combinatorics are presented; part two focuses on additive and analytic combinatorics; and part three presents topics in geometric and enumerative combinatorics. This book will be of use to those who research combinatorics directly or apply combinatorial methods to other fields.
Occasioned by the international conference "Rings and Factorizations" held in February 2018 at University of Graz, Austria, this volume represents a wide range of research trends in the theory of commutative and non-commutative rings and their modules, including multiplicative ideal theory, Dedekind and Krull rings and their generalizations, rings of integer valued-polynomials, topological aspects of ring theory, factorization theory in rings and semigroups and direct-sum decompositions of modules. The volume will be of interest to researchers seeking to extend or utilize work in these areas as well as graduate students wishing to find entryways into active areas of current research in algebra. A novel aspect of the volume is an emphasis on how diverse types of algebraic structures and contexts (rings, modules, semigroups, categories) may be treated with overlapping and reinforcing approaches.
This book collects together original research and survey articles highlighting the fertile interdisciplinary applications of convex lattice polytopes in modern mathematics. Covering a diverse range of topics, including algebraic geometry, mirror symmetry, symplectic geometry, discrete geometry, and algebraic combinatorics, the common theme is the study of lattice polytopes. These fascinating combinatorial objects are a cornerstone of toric geometry and continue to find rich and unforeseen applications throughout mathematics. The workshop Interactions with Lattice Polytopes assembled many top researchers at the Otto-von-Guericke-Universität Magdeburg in 2017 to discuss the role of lattice polytopes in their work, and many of their presented results are collected in this book. Intended to be accessible, these articles are suitable for researchers and graduate students interested in learning about some of the wide-ranging interactions of lattice polytopes in pure mathematics.
Toric varieties form a beautiful and accessible part of modern algebraic geometry. This book covers the standard topics in toric geometry; a novel feature is that each of the first nine chapters contains an introductory section on the necessary background material in algebraic geometry. Other topics covered include quotient constructions, vanishing theorems, equivariant cohomology, GIT quotients, the secondary fan, and the minimal model program for toric varieties. The subject lends itself to rich examples reflected in the 134 illustrations included in the text. The book also explores connections with commutative algebra and polyhedral geometry, treating both polytopes and their unbounded cousins, polyhedra. There are appendices on the history of toric varieties and the computational tools available to investigate nontrivial examples in toric geometry. Readers of this book should be familiar with the material covered in basic graduate courses in algebra and topology, and to a somewhat lesser degree, complex analysis. In addition, the authors assume that the reader has had some previous experience with algebraic geometry at an advanced undergraduate level. The book will be a useful reference for graduate students and researchers who are interested in algebraic geometry, polyhedral geometry, and toric varieties.
Unimodular triangulations of lattice polytopes arise in algebraic geometry, commutative algebra, integer programming and, of course, combinatorics. In this article, we review several classes of polytopes that do have unimodular triangulations and constructions that preserve their existence. We include, in particular, the first effective proof of the classical result by Knudsen-Mumford-Waterman stating that every lattice polytope has a dilation that admits a unimodular triangulation. Our proof yields an explicit (although doubly exponential) bound for the dilation factor.
This volume consists of introductory lectures on the topics in the new and rapidly developing area of toric homotopy theory, and its applications to the current research in configuration spaces and braids, as well as to more applicable mathematics such as fr-codes and robot motion planning.The book starts intertwining homotopy theoretical and combinatorial ideas within the remits of toric topology and illustrates an attempt to classify in a combinatorial way polytopes known as fullerenes, which are important objects in quantum physics, quantum chemistry and nanotechnology. Toric homotopy theory is then introduced as a further development of toric topology, which describes properties of Davis-Januszkiewicz spaces, moment-angle complexes and their generalizations to polyhedral products. The book also displays the current research on configuration spaces, braids, the theory of limits over the category of presentations and the theory of fr-codes. As an application to robotics, the book surveys topological problems relevant to the motion planning problem of robotics and includes new results and constructions, which enrich the emerging area of topological robotics.The book is at research entry level addressing the core components in homotopy theory and their important applications in the sciences and thus suitable for advanced undergraduate and graduate students.