Download Free Polynomials And Vanishing Cycles Book in PDF and EPUB Free Download. You can read online Polynomials And Vanishing Cycles and write the review.

The behaviour of vanishing cycles is the cornerstone for understanding the geometry and topology of families of hypersurfaces, usually regarded as singular fibrations. This self-contained tract proposes a systematic geometro-topological approach to vanishing cycles, especially those appearing in non-proper fibrations, such as the fibration defined by a polynomial function. Topics which have been the object of active research over the past 15 years, such as holomorphic germs, polynomial functions, and Lefschetz pencils on quasi-projective spaces, are here shown in a new light: conceived as aspects of a single theory with vanishing cycles at its core. Throughout the book the author presents the current state of the art. Transparent proofs are provided so that non-specialists can use this book as an introduction, but all researchers and graduate students working in differential and algebraic topology, algebraic geometry, and singularity theory will find this book of great use.
A systematic geometro-topological approach to vanishing cycles appearing in non-proper fibrations is proposed in this tract. Lefschetz theory, complex Morse theory and singularities of hypersurfaces are presented in detail leading to the latest research on topics such as the topology of singularities of meromorphic functions and non-generic Lefschetz pencils.
Part II of the Selected Works of Ivan Georgievich Petrowsky, contains his major papers on second order Partial differential equations, systems of ordinary. Differential equations, the theory, of Probability, the theory of functions, and the calculus of variations. Many of the articles contained in this book have Profoundly, influenced the development of modern mathematics. Of exceptional value is the article on the equation of diffusion with growing quantity of the substance. This work has found extensive application in biology, genetics, economics and other branches of natural science. Also of great importance is Petrowsky's work on a Problem which still remains unsolved - that of the number of limit cycles for ordinary differential equations with rational right-hand sides.
The biennial meetings at São Carlos have helped create a worldwide community of experts and young researchers working on singularity theory, with a special focus on applications to topics in both pure and applied mathematics. This volume brings together surveys and recent work from the tenth São Carlos meeting.
A celebration of the state of mathematics at the end of the millennium. Produced under the auspices of the International Mathematical Union (IMU), the book was born as part of the activities of World Mathematical Year 2000. It consists of 28 articles written by influential mathematicians.
On April 7-10, 1980, the American Mathematical Society sponsored a Symposium on the Mathematical Heritage of Henri Poincari, held at Indiana University, Bloomington, Indiana. This title presents the written versions this Symposium. It contains two papers by invited speakers who were not able to attend, S S Chern and L Nirenberg.
* Contains a selection of articles exploring geometric approaches to problems in algebra, algebraic geometry and number theory * The collection gives a representative sample of problems and most recent results in algebraic and arithmetic geometry * Text can serve as an intense introduction for graduate students and those wishing to pursue research in algebraic and arithmetic geometry
The book combines the features of a graduate-level textbook with those of a research monograph and survey of the recent results on analysis and geometry of differential equations in the real and complex domain. As a graduate textbook, it includes self-contained, sometimes considerably simplified demonstrations of several fundamental results, which previously appeared only in journal publications (desingularization of planar analytic vector fields, existence of analytic separatrices, positive and negative results on the Riemann-Hilbert problem, Ecalle-Voronin and Martinet-Ramis moduli, solution of the Poincare problem on the degree of an algebraic separatrix, etc.). As a research monograph, it explores in a systematic way the algebraic decidability of local classification problems, rigidity of holomorphic foliations, etc. Each section ends with a collection of problems, partly intended to help the reader to gain understanding and experience with the material, partly drafting demonstrations of the mor The exposition of the book is mostly geometric, though the algebraic side of the constructions is also prominently featured. on several occasions the reader is introduced to adjacent areas, such as intersection theory for divisors on the projective plane or geometric theory of holomorphic vector bundles with meromorphic connections. The book provides the reader with the principal tools of the modern theory of analytic differential equations and intends to serve as a standard source for references in this area.
The Workshop on Real and Complex Singularities is held every other year at the Instituto de Ciencias Matematicas e de Computacao (Sao Carlos, Brazil) and brings together specialists in the vanguard of singularities and its applications. This volume contains articles contributed by participants of the seventh workshop.