Download Free Polynomial And Rational Matrices Book in PDF and EPUB Free Download. You can read online Polynomial And Rational Matrices and write the review.

This book reviews new results in the application of polynomial and rational matrices to continuous- and discrete-time systems. It provides the reader with rigorous and in-depth mathematical analysis of the uses of polynomial and rational matrices in the study of dynamical systems. It also throws new light on the problems of positive realization, minimum-energy control, reachability, and asymptotic and robust stability.
This user-friendly, engaging textbook makes the material accessible to graduate students and new researchers who wish to study the rapidly exploding area of computations with structured matrices and polynomials. The book goes beyond research frontiers and, apart from very recent research articles, includes previously unpublished results.
This book aims to present the theory of interpolation for rational matrix functions as a recently matured independent mathematical subject with its own problems, methods and applications. The authors decided to start working on this book during the regional CBMS conference in Lincoln, Nebraska organized by F. Gilfeather and D. Larson. The principal lecturer, J. William Helton, presented ten lectures on operator and systems theory and the interplay between them. The conference was very stimulating and helped us to decide that the time was ripe for a book on interpolation for matrix valued functions (both rational and non-rational). When the work started and the first partial draft of the book was ready it became clear that the topic is vast and that the rational case by itself with its applications is already enough material for an interesting book. In the process of writing the book, methods for the rational case were developed and refined. As a result we are now able to present the rational case as an independent theory. After two years a major part of the first draft was prepared. Then a long period of revising the original draft and introducing recently acquired results and methods followed. There followed a period of polishing and of 25 chapters and the appendix commuting at various times somewhere between Williamsburg, Blacksburg, Tel Aviv, College Park and Amsterdam (sometimes with one or two of the authors).
A Polynomial Approach to Linear Algebra is a text which is heavily biased towards functional methods. In using the shift operator as a central object, it makes linear algebra a perfect introduction to other areas of mathematics, operator theory in particular. This technique is very powerful as becomes clear from the analysis of canonical forms (Frobenius, Jordan). It should be emphasized that these functional methods are not only of great theoretical interest, but lead to computational algorithms. Quadratic forms are treated from the same perspective, with emphasis on the important examples of Bezoutian and Hankel forms. These topics are of great importance in applied areas such as signal processing, numerical linear algebra, and control theory. Stability theory and system theoretic concepts, up to realization theory, are treated as an integral part of linear algebra. Finally there is a chapter on Hankel norm approximation for the case of scalar rational functions which allows the reader to access ideas and results on the frontier of current research.
College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory
This book is the first comprehensive treatment of numerical polynomial algebra, an area which so far has received little attention.
This computationally oriented book describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. The book bridges different mathematical areas to obtain algorithms to estimate bilinear forms involving two vectors and a function of the matrix. The first part of the book provides the necessary mathematical background and explains the theory. The second part describes the applications and gives numerical examples of the algorithms and techniques developed in the first part. Applications addressed in the book include computing elements of functions of matrices; obtaining estimates of the error norm in iterative methods for solving linear systems and computing parameters in least squares and total least squares; and solving ill-posed problems using Tikhonov regularization. This book will interest researchers in numerical linear algebra and matrix computations, as well as scientists and engineers working on problems involving computation of bilinear forms.
A thorough and elegant treatment of the theory of matrix functions and numerical methods for computing them, including an overview of applications, new and unpublished research results, and improved algorithms. Key features include a detailed treatment of the matrix sign function and matrix roots; a development of the theory of conditioning and properties of the Fre;chet derivative; Schur decomposition; block Parlett recurrence; a thorough analysis of the accuracy, stability, and computational cost of numerical methods; general results on convergence and stability of matrix iterations; and a chapter devoted to the f(A)b problem. Ideal for advanced courses and for self-study, its broad content, references and appendix also make this book a convenient general reference. Contains an extensive collection of problems with solutions and MATLAB implementations of key algorithms.
This book explores a new direction in linear algebra and operator theory dealing with the invariants of partially specified matrices and operators, and with the spectral analysis of their completions. The theory developed centers around two major problems concerning matrices of which part of the entries are given and the others are unspecified. The first is a problem of classification of partially specified matrices, and the results here may be seen as a far reaching generalization of the Jordan canonical form. The second problem is the eigenvalue completion problem, which asks for a description of all possible eigenvalues and their multiplicities of the matrices which one obtains by filling in the unspecified entries. Both problems are also considered in an infinite dimensional framework. A large part of the book deals with applications to matrix theory and analysis, namely to stabilization problems in mathematical system theory, to problems of Wiener-Hopf factorization and interpolation for matrix polynomials and rational matrix functions, to the Kronecker structure theory of linear pencils, and to non-everywhere defined operators. The book will appeal to a wide group of mathematicians and engineers. Much of the material can be used in advanced courses in matrix and operator theory.