Download Free Polymerase Chain Reaction For Biomedical Applications Book in PDF and EPUB Free Download. You can read online Polymerase Chain Reaction For Biomedical Applications and write the review.

Do you want to know the details that should be taken into consideration in order to have accurate conventional and real-time PCR results? If so, this book is for you. Polymerase Chain Reaction for Biomedical Applications is a collection of chapters for both novice and experienced scientists and technologists aiming to address obtaining an optimized real-time PCR result, simultaneous processing of a large number of samples and assays, performing PCR and RT-PCR on cell lysate without extraction of DNA or RNA, detecting false-positive PCR results, detecting organisms in viral and microbial diseases and hospital environment, following safety assessments of food products, and using PCR for introduction of mutations. This is a must-have book for any PCR laboratory.
Basic Science Methods for Clinical Researchers addresses the specific challenges faced by clinicians without a conventional science background. The aim of the book is to introduce the reader to core experimental methods commonly used to answer questions in basic science research and to outline their relative strengths and limitations in generating conclusive data. This book will be a vital companion for clinicians undertaking laboratory-based science. It will support clinicians in the pursuit of their academic interests and in making an original contribution to their chosen field. In doing so, it will facilitate the development of tomorrow's clinician scientists and future leaders in discovery science. - Serves as a helpful guide for clinical researchers who lack a conventional science background - Organized around research themes pertaining to key biological molecules, from genes, to proteins, cells, and model organisms - Features protocols, techniques for troubleshooting common problems, and an explanation of the advantages and limitations of a technique in generating conclusive data - Appendices provide resources for practical research methodology, including legal frameworks for using stem cells and animals in the laboratory, ethical considerations, and good laboratory practice (GLP)
Kary Mullis was awarded a Nobel Prize for inventing the PCR technique more than a decade ago in 1993. Since its "discovery", multiple adaptations and variations of the standard PCR technique have been described. This publication aims to provide the reader with a guide to the standard PCR technique and its many available variants, with particular emphasis being placed on the role of these PCR techniques in the clinical diagnostic laboratory (the central theme of this book).
The first comprehensive treatise on Rapid Cycle Real-Time PCR. With amplification times of 15-30 minutes of on-line detection and analysis, nucleic acid quantification of mutation analysis finally becomes a routine, powerful and rapid method. Focusing primarily on the LightCycler, an instrument that combines Rapid Cycle PCR with fluorescent monitoring, this technology provides convenient analysis by melting temperatures. PCR products can be identified by product Tm, and single base mismatches can easily be genotyped by probe Tm. Methods chapters detail the theory behind quantification of mutation analysis; the design of synthesis of fluorescent hybridization probes of the preparation of template DNA. Application chapters apply nucleid acid quantification to infectious organisms of intracellular messengers and mutation detection to somatic of acquired mutations.
James D. Watson When, in late March of 1953, Francis Crick and I came to write the first Nature paper describing the double helical structure of the DNA molecule, Francis had wanted to include a lengthy discussion of the genetic implications of a molecule whose struc ture we had divined from a minimum of experimental data and on theoretical argu ments based on physical principles. But I felt that this might be tempting fate, given that we had not yet seen the detailed evidence from King's College. Nevertheless, we reached a compromise and decided to include a sentence that pointed to the biological significance of the molecule's key feature-the complementary pairing of the bases. "It has not escaped our notice," Francis wrote, "that the specific pairing that we have postulated immediately suggests a possible copying mechanism for the genetic material." By May, when we were writing the second Nature paper, I was more confident that the proposed structure was at the very least substantially correct, so that this second paper contains a discussion of molecular self-duplication using templates or molds. We pointed out that, as a consequence of base pairing, a DNA molecule has two chains that are complementary to each other. Each chain could then act ". . . as a template for the formation on itself of a new companion chain, so that eventually we shall have two pairs of chains, where we only had one before" and, moreover, " ...
Principles and Applications of Molecular Diagnostics serves as a comprehensive guide for clinical laboratory professionals applying molecular technology to clinical diagnosis. The first half of the book covers principles and analytical concepts in molecular diagnostics such as genomes and variants, nucleic acids isolation and amplification methods, and measurement techniques, circulating tumor cells, and plasma DNA; the second half presents clinical applications of molecular diagnostics in genetic disease, infectious disease, hematopoietic malignancies, solid tumors, prenatal diagnosis, pharmacogenetics, and identity testing. A thorough yet succinct guide to using molecular testing technology, Principles and Applications of Molecular Diagnostics is an essential resource for laboratory professionals, biologists, chemists, pharmaceutical and biotech researchers, and manufacturers of molecular diagnostics kits and instruments. - Explains the principles and tools of molecular biology - Describes standard and state-of-the-art molecular techniques for obtaining qualitative and quantitative results - Provides a detailed description of current molecular applications used to solve diagnostics tasks
Clinical microbiologists are engaged in the field of diagnostic microbiology to determine whether pathogenic microorganisms are present in clinical specimens collected from patients with suspected infections. If microorganisms are found, these are identified and susceptibility profiles, when indicated, are determined. During the past two decades, technical advances in the field of diagnostic microbiology have made constant and enormous progress in various areas, including bacteriology, mycology, mycobacteriology, parasitology, and virology. The diagnostic capabilities of modern clinical microbiology laboratories have improved rapidly and have expanded greatly due to a technological revolution in molecular aspects of microbiology and immunology. In particular, rapid techniques for nucleic acid amplification and characterization combined with automation and user-friendly software have significantly broadened the diagnostic arsenal for the clinical microbiologist. The conventional diagnostic model for clinical microbiology has been labor-intensive and frequently required days to weeks before test results were available. Moreover, due to the complexity and length of such testing, this service was usually directed at the hospitalized patient population. The physical structure of laboratories, staffing patterns, workflow, and turnaround time all have been influenced profoundly by these technical advances. Such changes will undoubtedly continue and lead the field of diagnostic microbiology inevitably to a truly modern discipline. Advanced Techniques in Diagnostic Microbiology provides a comprehensive and up-to-date description of advanced methods that have evolved for the diagnosis of infectious diseases in the routine clinical microbiology laboratory. The book is divided into two sections. The first techniques section covers the principles and characteristics of techniques ranging from rapid antigen testing, to advanced antibody detection, to in vitro nucleic acid amplification techniques, and to nucleic acid microarray and mass spectrometry. Sufficient space is assigned to cover different nucleic acid amplification formats that are currently being used widely in the diagnostic microbiology field. Within each technique, examples are given regarding its application in the diagnostic field. Commercial product information, if available, is introduced with commentary in each chapter. If several test formats are available for a technique, objective comparisons are given to illustrate the contrasts of their advantages and disadvantages. The second applications section provides practical examples of application of these advanced techniques in several "hot" spots in the diagnostic field. A diverse team of authors presents authoritative and comprehensive information on sequence-based bacterial identification, blood and blood product screening, molecular diagnosis of sexually transmitted diseases, advances in mycobacterial diagnosis, novel and rapid emerging microorganism detection and genotyping, and future directions in the diagnostic microbiology field. We hope our readers like this technique-based approach and your feedback is highly appreciated. We want to thank the authors who devoted their time and efforts to produce their chapters. We also thank the staff at Springer Press, especially Melissa Ramondetta, who initiated the whole project. Finally, we greatly appreciate the constant encouragement of our family members through this long effort. Without their unwavering faith and full support, we would never have had the courage to commence this project.
An essential reference filled with 400 of today's current biomedical instruments and devices Designed mainly for the active bio-medical equipment technologists involved in hands-on functions like managing these technologies by way of their usage, operation & maintenance and those engaged in advancing measurement techniques through research and development, this book covers almost the entire range of instruments and devices used for diagnosis, imaging, analysis, and therapy in the medical field. Compiling 400 instruments in alphabetical order, it provides comprehensive information on each instrument in a lucid style. Each description in Compendium of Biomedical Instrumentation covers four aspects: purpose of the instrument; principle of operation, which covers physics, engineering, electronics, and data processing; brief specifications; and major applications. Devices listed range from the accelerometer, ballistocardiograph, microscopes, lasers, and electrocardiograph to gamma counter, hyperthermia system, microtome, positron emission tomography, uroflowmeter, and many more. Covers almost the entire range of medical instruments and devices which are generally available in hospitals, medical institutes at tertiary, secondary, and peripheral level facilities Presents broad areas of applications of medical instruments/technology, including specialized equipment for various medical specialties, fully illustrated with figures & photographs Contains exhaustive description on state of the art instruments and also includes some generation old legacy instruments which are still in use in some medical facilities. Compendium of Biomedical Instrumentation is a must-have resource for professionals and undergraduate and graduate students in biomedical engineering, as well as for clinical engineers and bio-medical equipment technicians.
This indispensable manual is a compilation of review articles written by experts in the field of PCR technology. It is a recommended purchase for all microbiology and molecular biology laboratories and university libraries.
The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. - Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field - Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms - Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy