Download Free Polymer Solutions Book in PDF and EPUB Free Download. You can read online Polymer Solutions and write the review.

Polymer Solutions: An Introduction to Physical Properties offers a fresh, inclusive approach to teaching the fundamentals of physical polymer science. Students, instructors, and professionals in polymer chemistry, analytical chemistry, organic chemistry, engineering, materials, and textiles will find Iwao Teraoka’s text at once accessible and highly detailed in its treatment of the properties of polymers in the solution phase. Teraoka’s purpose in writing Polymer Solutions is twofold: to familiarize the advanced undergraduate and beginning graduate student with basic concepts, theories, models, and experimental techniques for polymer solutions; and to provide a reference for researchers working in the area of polymer solutions as well as those in charge of chromatographic characterization of polymers. The author’s incorporation of recent advances in the instrumentation of size-exclusion chromatography, the method by which polymers are analyzed, renders the text particularly topical. Subjects discussed include: Real, ideal, Gaussian, semirigid, and branched polymer chains Polymer solutions and thermodynamics Static light scattering of a polymer solution Dynamic light scattering and diffusion of polymers Dynamics of dilute and semidilute polymer solutions Study questions at the end of each chapter not only provide students with the opportunity to test their understanding, but also introduce topics relevant to polymer solutions not included in the main text. With over 250 geometrical model diagrams, Polymer Solutions is a necessary reference for students and for scientists pursuing a broader understanding of polymers.
Light scattering is a very powerful method for characterizing the structure of polymers and nanoparticles in solution. As part of the Springer Laboratory series, this book provides a simple-to-read and illustrative textbook probing the seemingly very complicated topic of light scattering from polymers and nanoparticles in dilute solution, and goes further to cover some of the latest technical developments in experimental light scattering.
Schäfer gives a concise overview of the static equilibrium properties of polymer solutions. In the first part diagrammatic perturbation theory is derived from scratch. The second part illustrates the basic ideas of the renormalization group (RG). The crucial role of dilation invariance is stressed. The more efficient method of dimensional regularization and minimal subtractions is worked out in part three. The fourth part contains a unified evaluation of the theory to the one loop level. All the important experimental quantities are discussed in detail, and the results are compared extensively to experiment. Empirical methods of data analysis are critically discussed. The final (fifth) part is devoted to extensions of theory. The first three parts of this book may serve as the basis of a course. Parts four and five are hoped to be useful for detailed quantitative evaluations of experiments.
Remarkable progress has been made in the last two decades in the study of concentrated polymer solutions leading to many new concepts, theories, and techniques in the field of polymer science. Any description of the theory of polymer solutions is now insufficient unless both concentrated and dilute solutions are given equal attention. This book reviews recent developments in the study of dilute and concentrated polymer solutions, emphasizing mainly the typical equilibrium and steady-state dynamic properties of linear homopolymers. The author strives to clarify the gap which still remains open between current theories and well-documented experimental results, thereby stimulating further efforts toward a more accurate understanding of polymer solutions.The book contains a collection of typical experimental data and their comparison with current theories, molecular or phenomenological, a summary of recent advances in the physics of concentrated polymer solutions and melts, and an elementary account of the renormalization group theory as applied to dilute solutions. Polymer Solutions should prove invaluable as a reference work for graduate students and specialists in this field.
This book presents the "helical wormlike chain" model – a general model for both flexible and semiflexible polymer chains. It explains how statistical-mechanical, hydrodynamic, and dynamic theories of their solution properties can be developed on the basis of this model. This new second edition has been carefully updated and thoroughly revised. It includes a new chapter covering "Simulation and More on Excluded-Volume Effects", as well as the discussion of new experimental data and the application of the theory to ring polymers. The authors provide analysis of important recent experimental data by the use of their theories for flexible polymers over a wide range of molecular weights, including the oligomer region, and for semiflexible polymers, including biological macromolecules such as DNA. This is all clearly illustrated using a reasonable number of theoretical equations, tables, figures, and computer-aided forms, which support the understanding of the basic theory and help to facilitate its application to experimental data for the polymer molecular characterization.
Presenting a completely new approach to examining how polymers move in non-dilute solution, this book focuses on experimental facts, not theoretical speculations, and concentrates on polymer solutions, not dilute solutions or polymer melts. From centrifugation and solvent dynamics to viscosity and diffusion, experimental measurements and their quantitative representations are the core of the discussion. The book reveals several experiments never before recognized as revealing polymer solution properties. A novel approach to relaxation phenomena accurately describes viscoelasticity and dielectric relaxation and how they depend on polymer size and concentration. Ideal for graduate students and researchers interested in the properties of polymer solutions, the book covers real measurements on practical systems, including the very latest results. Every significant experimental method is presented in considerable detail, giving unprecedented coverage of polymers in solution.
The behaviour of polymers in multi-component and multiphase systems such as solutions, blends and interfaces derived from both natural and synthetic sources and the subsequent influence of this on their physical properties is the theme of this book. Important new material on multiphase polymer systems such as block copolymers and liquid crystalline polymers is provided, and the solution and surface properties of enzymes and surface active polymers is described both theoretically and experimentally. The application of theory to the development of new cellulosic materials is particularly noteworthy. The relationship between end-use properties, such as adhesion, wetting, and colloidal stability, and molecular structure at the interface is addressed. Examples include the capillary pressure of nylon microporous membranes, a new technique for characterizing the adhesion between incompatible polymers, and the influence of the glass transition temperature at the fiber/matrix interface on interfacial shear strength. Characterization of polymer films, both electrochemically and via optical techniques is covered and the interactions of amphiphilic ions with polyacrylate polymer are described. The final two chapters introduce the topic of enzyme mobility at an interface and show how this may affect their role as biological catalysts.
This book is mainly concerned with building a narrow but secure ladder which polymer chemists or engineers can climb from the primary level to an advanced level without great difficulty (but by no means easily, either). This book describes some fundamentally important topics, carefully chosen, covering subjects from thermodynamics to molecular weight and its distribution effects. For help in self-education the book adopts a "Questions and Answers" format. The mathematical derivation of each equation is shown in detail. For further reading, some original references are also given. Numerous physical properties of polymer solutions are known to be significantly different from those of low molecular weight solutions. The most probable explanation of this obvious discrepancy is the large molar volume ratio of solute to solvent together with the large number of consecutive segments that constitute each single molecule of the polymer chains present as solute. Thorough understanding of the physical chemistry of polymer solutions requires some prior mathematical background in its students. In the original literature, detailed mathematical derivations of the equations are universally omitted for the sake of space-saving and simplicity. In textbooks of polymer science only extremely rough schemes of the theories and then the final equations are shown. As a consequence, the student cannot learn, unaided, the details of the theory in which he or she is interested from the existing textbooks; however, without a full understanding of the theory, one cannot analyze actual experimental data to obtain more basic and realistic physical quantities. In particular, if one intends to apply the theories in industry, accurate understanding and ability to modify the theory are essential.
This book provides an important structural analysis of polymer solutions and melts, using fractal analysis. The book covers the theoretical fundamentals of macromolecules fractal analysis. It then goes on to discuss the fractal physics of polymer solutions and the fractal physics of melts. The intended audience of the book includes specialists in chemistry and physics of polymer synthesis and those in the field of polymers and polymer composites processing.
Thermodynamic data form the basis for separation processes used in different fields of science and industry, from specialty chemicals to foods and pharmaceuticals. One obstacle to developing new production processes, products, or optimization is the lack, or inaccessibility, of experimental data related to phase equilibrium. Access More Than 1200 Data Sets, Including 810 Binary Systems, 325 Ternary Systems, and 25 Quaternary (or Higher) Systems The CRC Handbook of Liquid-Liquid Equilibrium Data of Polymer Solutions provides a thorough and up-to-date compilation of experimental liquid-liquid equilibrium (LLE) data and their original sources. Arranged in a consistent format, the handbook provides convenient access to cloud-point and coexistence data as well as upper and lower critical solution temperatures and important demixing data for each system. An Excellent Companion to the Author’s Previous Collections of Thermodynamic Data! While the author’s previous data compilations center around specific types of polymer systems, Wohlfharth’s latest work distinguishes itself by focusing instead on representing LLE data for all types of polymer systems in a single source.