Download Free Polymer Science Engineering E Book Book in PDF and EPUB Free Download. You can read online Polymer Science Engineering E Book and write the review.

Tremendous developments in the field of polymer science, its growing importance, and an increase in the number of polymer science courses in both physics and chemistry departments have led to the revision of the First Edition. This new edition addresses subjects as spectroscopy (NMR), dynamic light scattering, and other modern techniques unknown before the publication of the First Edition. The Second Edition focuses on both theory (physics and chemistry) and engineering applications which make it useful for chemistry, physics, and chemical engineering departments.
Polymers are used in everything from nylon stockings to commercial aircraft to artificial heart valves, and they have a key role in addressing international competitiveness and other national issues. Polymer Science and Engineering explores the universe of polymers, describing their properties and wide-ranging potential, and presents the state of the science, with a hard look at downward trends in research support. Leading experts offer findings, recommendations, and research directions. Lively vignettes provide snapshots of polymers in everyday applications. The volume includes an overview of the use of polymers in such fields as medicine and biotechnology, information and communication, housing and construction, energy and transportation, national defense, and environmental protection. The committee looks at the various classes of polymersâ€"plastics, fibers, composites, and other materials, as well as polymers used as membranes and coatingsâ€"and how their composition and specific methods of processing result in unparalleled usefulness. The reader can also learn the science behind the technology, including efforts to model polymer synthesis after nature's methods, and breakthroughs in characterizing polymer properties needed for twenty-first-century applications. This informative volume will be important to chemists, engineers, materials scientists, researchers, industrialists, and policymakers interested in the role of polymers, as well as to science and engineering educators and students.
This polymer science and engineering e-book was motivated by the outrageously high price of paper textbooks. It covers the usual topics – polymer synthesis, structure, properties and processing plus chapters on natural polymers and polymer matrix composites. It is meant to be read on a desktop or laptop computer, because the format is “fixed” rather than “re-flowable”, meaning that the text, figures, animations, etc., stay in a fixed position relative to one another, just like in a paper book. The book lives on the cloud and you can access it with a password on up to three of your own browsers. For more details check out the preview on Google Books.
"Written by two of the best-known scientists in the field, Paul C. Painter and Michael M. Coleman, this unique text helps students, as well as professionals in industry, understand the science, and appreciate the history, of polymers. Composed in a witty and accessible style, the book presents a comprehensive account of polymer chemistry and related engineering concepts, highly illustrated with worked problems and hundreds of clearly explained formulas. In contrast to other books, 'Essentials' adds historical information about polymer science and scientists and shows how laboratory discoveries led to the development of modern plastics."--DEStech Publications web-site.
Exploring the chemistry of synthesis, mechanisms of polymerization, reaction engineering of step-growth and chain-growth polymerization, polymer characterization, thermodynamics and structural, mechanical, thermal and transport behavior of polymers as melts, solutions and solids, Fundamentals of Polymer Engineering, Third Edition covers essential concepts and breakthroughs in reactor design and polymer production and processing. It contains modern theories and real-world examples for a clear understanding of polymer function and development. This fully updated edition addresses new materials, applications, processing techniques, and interpretations of data in the field of polymer science. It discusses the conversion of biomass and coal to plastics and fuels, the use of porous polymers and membranes for water purification, and the use of polymeric membranes in fuel cells. Recent developments are brought to light in detail, and there are new sections on the improvement of barrier properties of polymers, constitutive equations for polymer melts, additive manufacturing and polymer recycling. This textbook is aimed at senior undergraduate students and first year graduate students in polymer engineering and science courses, as well as professional engineers, scientists, and chemists. Examples and problems are included at the end of each chapter for concept reinforcement.
This is an introductory textbook on polymer science aimed at lecturers/professors, undergraduate and graduate students of polymer science and technology courses as well as engineering (materials, chemical, civil, food, etc.), chemistry, and physics. It is also aimed at engineers and technologists. Each chapter is written starting from simple concepts and progressively getting more complex towards its end, to help the reader decide how deep to go into each topic. Each chapter also presents the solution of many proposed problems, guiding the reader to solve numerically the everyday problems polymer technologists face, by applying theoretical concepts. Additionally, at every chapter's end there is a list of problems for the reader to check his/her understanding of the topics. The book contains a list of more than 10 experiments to perform in the laboratory, linked to some of the concepts discussed in the book. It also serves as a long-term reference with many figures, diagrams, tables, chemical equations containing frequently needed information. It contains as well an appendix with a long list of chemical structures of the main commercially available polymers.
This successor to the popular textbook, “Polymer Physics” (Springer, 1999), is the result of a quarter-century of teaching experience as well as critical comments from specialists in the various sub-fields, resulting in better explanations and more complete coverage of key topics. With a new chapter on polymer synthesis, the perspective has been broadened significantly to encompass polymer science rather than “just” polymer physics. Polysaccharides and proteins are included in essentially all chapters, while polyelectrolytes are new to the second edition. Cheap computing power has greatly expanded the role of simulation and modeling in the past two decades, which is reflected in many of the chapters. Additional problems and carefully prepared graphics aid in understanding. Two principles are key to the textbook’s appeal: 1) Students learn that, independent of the origin of the polymer, synthetic or native, the same general laws apply, and 2) students should benefit from the book without an extensive knowledge of mathematics. Taking the reader from the basics to an advanced level of understanding, the text meets the needs of a wide range of students in chemistry, physics, materials science, biotechnology, and civil engineering, and is suitable for both masters- and doctoral-level students. Praise for the previous edition: ...an excellent book, well written, authoritative, clear and concise, and copiously illustrated with appropriate line drawings, graphs and tables. - Polymer International ...an extremely useful book. It is a pleasure to recommend it to physical chemists and materials scientists, as well as physicists interested in the properties of polymeric materials. - Polymer News This valuable book is ideal for those who wish to get a brief background in polymer science as well as for those who seek a further grounding in the subject. - Colloid Polymer Science The solutions to the exercises are given in the final chapter, making it a well thought-out teaching text. - Polymer Science
Polymers have an important role in manufacturing and their engineering properties form an important part of any course in engineering. This revised and updated second edition develops the principles of polymer engineering from the underlying materials science, and is aimed at undergraduateand postgraduate students in engineering and materials science. The opening chapters explain why plastics and rubbers have such distinctive properties and how these are affected by temperature, strain rate, and other factors. The book then explores how these properties can be exploited within theseproperty constraints to produce functional components. Major changes for this second edition include an introductory chapter on the environmental impact of polymers, emphasizing the important issues, and substantially revised sections on fracture testing for toughened polymers, yield, processing,heat transfer, and polymer forming.
This book provides a unified mechanics and materials perspective on polymers: both the mathematics of viscoelasticity theory as well as the physical mechanisms behind polymer deformation processes. Introductory material on fundamental mechanics is included to provide a continuous baseline for readers from all disciplines. Introductory material on the chemical and molecular basis of polymers is also included, which is essential to the understanding of the thermomechanical response. This self-contained text covers the viscoelastic characterization of polymers including constitutive modeling, experimental methods, thermal response, and stress and failure analysis. Example problems are provided within the text as well as at the end of each chapter. New to this edition: · One new chapter on the use of nano-material inclusions for structural polymer applications and applications such as fiber-reinforced polymers and adhesively bonded structures · Brings up-to-date polymer production and sales data and equipment and procedures for evaluating polymer characterization and classification · The work serves as a comprehensive reference for advanced seniors seeking graduate level courses, first and second year graduate students, and practicing engineers
Approximately half of the world production of the petrochemical industry (more than 100 million tonnes) is in the form of polymers, yet it would probably surprise most people to learn how much their lifestyle depends on polymers ranging, as they do, from detergents, kitchenware and electrical appliances to furnishings and a myriad other domestic goods. Still less are they likely to be aware of the extensive part they play in engineering applications for mechanical machine components and advanced high performance aircraft. This versatility derives from the fact that polymeric materials are made up of a range of molecules of varying length, whose properties are related to molecular structure and the proportions of the chains in the mixture. For example, polypropylene is a commodity polymer which is produced in hun dreds of different grades to meet specific market requirements. This depends on the catalyst as well as the operating conditions and reactor design. A major area for growth is in substituting polymers for conventional materials such as ceramics and metals. Not only can they match these materials in terms of mechanical strength and robustness but they have very good resistance to chemical attack. Polyamides, for example, are widely used for car bumpers and new polymers are being developed for engine manifolds and covers. In 1993 there is, typically, 100 kg of various polymers used in cars and this is continually increasing, giving a net weight reduction and hence better fuel economy.