Download Free Polar Codes Book in PDF and EPUB Free Download. You can read online Polar Codes and write the review.

This book explains the philosophy of the polar encoding and decoding technique. Polar codes are one of the most recently discovered capacity-achieving channel codes. What sets them apart from other channel codes is the fact that polar codes are designed mathematically and their performance is mathematically proven. The book develops related fundamental concepts from information theory, such as entropy, mutual information, and channel capacity. It then explains the successive cancellation decoding logic and provides the necessary formulas, moving on to demonstrate the successive cancellation decoding operation with a tree structure. It also demonstrates the calculation of split channel capacities when polar codes are employed for binary erasure channels, and explains the mathematical formulation of successive cancellation decoding for polar codes. In closing, the book presents and proves the channel polarization theorem, before mathematically analyzing the performance of polar codes.
A new class of provably capacity achieving error-correction codes, polar codes are suitable for many problems, such as lossless and lossy source coding, problems with side information, multiple access channel, etc. The first comprehensive book on the implementation of decoders for polar codes, the authors take a tutorial approach to explain the practical decoder implementation challenges and trade-offs in either software or hardware. They also demonstrate new trade-offs in latency, throughput, and complexity in software implementations for high-performance computing and GPGPUs, and hardware implementations using custom processing elements, full-custom application-specific integrated circuits (ASICs), and field-programmable-gate arrays (FPGAs). Presenting a good overview of this research area and future directions, High-Speed Decoders for Polar Codes is perfect for any researcher or SDR practitioner looking into implementing efficient decoders for polar codes, as well as students and professors in a modern error correction class. As polar codes have been accepted to protect the control channel in the next-generation mobile communication standard (5G) developed by the 3GPP, the audience includes engineers who will have to implement decoders for such codes and hardware engineers designing the backbone of communication networks.
A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.
Critical coding techniques have developed over the past few decades for data storage, retrieval and transmission systems, yet they are rarely covered in the graduate curricula. This book provides new researchers in academia and industry with informal introductions to the basic ideas of these topics, including pointers to further reading.
Polarization and Polar Codes: A Tutorial is the first in-depth tutorial on this exciting new technique that promises to offer major improvements in digital communications systems."
The book constitutes the refereed proceedings of the 13th EAI International Conference on Communications and Networking, held in October 2018 in Chengdu, China. The 71 papers presented were carefully selected from 114 submissions. The papers are organized in topical sections on wireless communications and networking, next generation WLAN, big data networks, cloud communications and networking, ad hoc and sensor networks, satellite and space communications and networking, optical communications and networking, information and coding theory, multimedia communications and smart networking, green communications and computing, signal processing for communications, network and information security, machine-to-machine and IoT, communication QoS, reliability and modeling, cognitive radio and networks, smart internet of things modeling, pattern recognition and image signal processing, digital audio and video signal processing, antenna and microwave communications, radar imaging and target recognition, and video coding and image signal processing.
An accessible textbook that uses step-by-step explanations, relatively easy mathematics and numerous examples to aid student understanding.
This two volume set constitutes the refereed proceedings of the 14th EAI International Conference on Communications and Networking, ChinaCom 2019, held in November/December 2019 in Shanghai, China. The 81 papers presented were carefully selected from 162 submissions. The papers are organized in topical sections on Internet of Things (IoT), antenna, microwave and cellular communication, wireless communications and networking, network and information security, communication QoS, reliability and modeling, pattern recognition and image signal processing, and information processing.
This book constitutes the refereed post-conference proceedings of the 10th International Conference on Wireless Internet , WiCON 2017, held in Tianjin, China, in December 2017. The 42 full papers were selected from 70 submissions and cover the following topics: wireless networking, massive MIMO and mmWave, WSNs and VANETs, security and IoT, wireless communications, cloud and big data networking.
This book provides a comprehensive coverage of major channel codes adopted since the 3rd generation of mobile communication. Modulation schemes suitable for 5G mobile communications are also described based on key New Radio application scenarios and performance requirements. It covers low density parity check (LDPC) codes, Polar codes, tail-biting convolutional codes (TBCC) and Turbo codes. Outer codes and a few advanced coding and modulations are also discussed. In addition, it includes detailed illustration of each channel coding scheme such as the basic code structure, decoding algorithms, performance evaluation and complexity analysis. The book offers insights on why and how channel codes are designed and developed in standardization organizations, which significantly facilitates the reading and understanding of the of 5G channel coding technologies. Channel Coding in 5G New Radio will be an essential read for researchers and students of digital communications, wireless communications engineers, and those who are interested in mobile communications in general.