Download Free Plants Genes And Crop Biotechnology Book in PDF and EPUB Free Download. You can read online Plants Genes And Crop Biotechnology and write the review.

This book integrates many fields to help students understand the complexity of the basic science that underlies crop and food production.
What needs to happen if we are going to feed almost 10 billion people by the year 2050 in a sustainable way? Written for first- and second-year university students, this interdisciplinary textbook addresses this challenging question, presenting biological, economic, and sociocultural issues at an introductory level. Presenting and integrating information from many disciplines, this book invites readers to consider the complexity of feeding humanity and increasing food production sustainably. Topics covered include: the development, physiology, and nutrition of plants human nutrition and food safety photosynthesis and energy transformations genetics, molecular biology, and genomics, including the techniques of genetic transformation (gene silencing, gene editing with CRISPR) used in modern crop breeding crop domestication and plant breeding soil ecosystems The applications of modern biotechnology to agriculture extend far beyond GMOs, and include crop improvements that rely on knowledge of the plant’s genomes and its analysis by bioinformatics. Challenging and controversial topics such as the safety of pesticides and GMOs, the increasing demand foranimal products and the stresses this puts on agricultural output, organic farming and foods, and patenting new crop varieties are dealt with in a balanced way, inviting teachers and students to consider all the implications of these serious questions.
Designed to inform and inspire the next generation of plant biotechnologists Plant Biotechnology and Genetics explores contemporary techniques and applications of plant biotechnology, illustrating the tremendous potential this technology has to change our world by improving the food supply. As an introductory text, its focus is on basic science and processes. It guides students from plant biology and genetics to breeding to principles and applications of plant biotechnology. Next, the text examines the critical issues of patents and intellectual property and then tackles the many controversies and consumer concerns over transgenic plants. The final chapter of the book provides an expert forecast of the future of plant biotechnology. Each chapter has been written by one or more leading practitioners in the field and then carefully edited to ensure thoroughness and consistency. The chapters are organized so that each one progressively builds upon the previous chapters. Questions set forth in each chapter help students deepen their understanding and facilitate classroom discussions. Inspirational autobiographical essays, written by pioneers and eminent scientists in the field today, are interspersed throughout the text. Authors explain how they became involved in the field and offer a personal perspective on their contributions and the future of the field. The text's accompanying CD-ROM offers full-color figures that can be used in classroom presentations with other teaching aids available online. This text is recommended for junior- and senior-level courses in plant biotechnology or plant genetics and for courses devoted to special topics at both the undergraduate and graduate levels. It is also an ideal reference for practitioners.
This Special Issue on molecular genetics, genomics, and biotechnology in crop plant breeding seeks to encourage the use of the tools currently available. It features nine research papers that address quality traits, grain yield, and mutations by exploring cytoplasmic male sterility, the delicate control of flowering in rice, the removal of anti-nutritional factors, the use and development of new technologies for non-model species marker technology, site-directed mutagenesis and GMO regulation, genomics selection and genome-wide association studies, how to cope with abiotic stress, and an exploration of fruit trees adapted to harsh environments for breeding purposes. A further four papers review the genetics of pre-harvest spouting, readiness for climate-smart crop development, genomic selection in the breeding of cereal crops, and the large numbers of mutants in straw lignin biosynthesis and deposition.
"The book...is, in fact, a short text on the many practical problems...associated with translating the explosion in basic biotechnological research into the next Green Revolution," explains Economic Botany. The book is "a concise and accurate narrative, that also manages to be interesting and personal...a splendid little book." Biotechnology states, "Because of the clarity with which it is written, this thin volume makes a major contribution to improving public understanding of genetic engineering's potential for enlarging the world's food supply...and can be profitably read by practically anyone interested in application of molecular biology to improvement of productivity in agriculture."
This book links the latest advances in molecular genetics with the science and history of plant domestication, the evolution of plant breeding, and the implications of our new knowledge for the agriculture of today and the future.
Plant molecular biology came to the fore in the early 1980s and there has been tremendous growth in the subject since then. The study of plant genes and genomes, coupled with the development of techniques for the incorporation of novel or modified genes into plants, eventually led to the commercialisation of genetically modified (GM) crops in the mid-1990s. This was seen as the start of a biotechnological revolution in plant breeding. However, plant biotechnology became one of the hottest debates of the age and, in Europe at least, has been mired in controversy and over-regulation. Nevertheless, recent years have seen further technological innovation in the development of a range of techniques that enable scientists to make specific changes to target genes.Through a detailed history and development of the science and techniques that underpin crop biotechnology, this title is concise, comprehensive and readable. As well as new sections on genome editing, this edition includes expanded sections on current GM crops and future developments in plant biotechnology, and updated sections on techniques, legislation and the GM crop debate.The previous edition of this book, titled Genetically Modified Crops, 2nd Edition, was published in November 2011.
Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.
Applied plant genomics and biotechnology reviews the recent advancements in the post-genomic era, discussing how different varieties respond to abiotic and biotic stresses, investigating epigenetic modifications and epigenetic memory through analysis of DNA methylation states, applicative uses of RNA silencing and RNA interference in plant physiology and in experimental transgenics, and plants modified to produce high-value pharmaceutical proteins. The book provides an overview of research advances in application of RNA silencing and RNA interference, through Virus-based transient gene expression systems, Virus induced gene complementation (VIGC), Virus induced gene silencing (Sir VIGS, Mr VIGS) Virus-based microRNA silencing (VbMS) and Virus-based RNA mobility assays (VRMA); RNA based vaccines and expression of virus proteins or RNA, and virus-like particles in plants, the potential of virus vaccines and therapeutics, and exploring plants as factories for useful products and pharmaceuticals are topics wholly deepened. The book reviews and discuss Plant Functional Genomic studies discussing the technologies supporting the genetic improvement of plants and the production of plant varieties more resistant to biotic and abiotic stresses. Several important crops are analysed providing a glimpse on the most up-to-date methods and topics of investigation. The book presents a review on current state of GMO, the cisgenesis-derived plants and novel plant products devoid of transgene elements, discuss their regulation and the production of desired traits such as resistance to viruses and disease also in fruit trees and wood trees with long vegetative periods. Several chapters cover aspects of plant physiology related to plant improvement: cytokinin metabolism and hormone signaling pathways are discussed in barley; PARP-domain proteins involved in Stress-Induced Morphogenetic Response, regulation of NAD signaling and ROS dependent synthesis of anthocyanins. Apple allergen isoforms and the various content in different varieties are discussed and approaches to reduce their presence. Euphorbiaceae, castor bean, cassava and Jathropa are discussed at genomic structure, their diseases and viruses, and methods of transformation. Rice genomics and agricultural traits are discussed, and biotechnology for engineering and improve rice varieties. Mango topics are presented with an overview of molecular methods for variety differentiation, and aspects of fruit improvement by traditional and biotechnology methods. Oilseed rape is presented, discussing the genetic diversity, quality traits, genetic maps, genomic selection and comparative genomics for improvement of varieties. Tomato studies are presented, with an overview on the knowledge of the regulatory networks involved in flowering, methods applied to study the tomato genome-wide DNA methylation, its regulation by small RNAs, microRNA-dependent control of transcription factors expression, the development and ripening processes in tomato, genomic studies and fruit modelling to establish fleshy fruit traits of interest; the gene reprogramming during fruit ripening, and the ethylene dependent and independent DNA methylation changes. - provides an overview on the ongoing projects and activities in the field of applied biotechnology - includes examples of different crops and applications to be exploited - reviews and discusses Plant Functional Genomic studies and the future developments in the field - explores the new technologies supporting the genetic improvement of plants
Recent progress in biotechnology and genomics has expanded the plant breeders’ horizon providing a molecular platform on the traditional plant breeding, which is now known as ‘plant molecular breeding’. Although diverse technologies for molecular breeding have been developed and applied individually for plant genetic improvement, common use in routine breeding programs seems to be limited probably due to the complexity and incomplete understanding of the technologies. This book is intended to provide a guide for researchers or graduate students involved in plant molecular breeding by describing principles and application of recently developed technologies with actual case studies for practical use. The nine topics covered in this book include the basics on genetic analysis of agronomic traits, methods of detecting QTLs, the application of molecular markers, genomics-assisted breeding including epigenomic issues, and genome-wide association studies. Identification methods of mutagenized plants, actual case studies for the isolation and functional studies of genes, the basics of gene transfer in major crops and the procedures for commercialization of GM crops are also described. This book would be a valuable reference for plant molecular breeders and a cornerstone for the development of new technologies in plant molecular breeding for the future.