Download Free Plant Metabolic Engineering Book in PDF and EPUB Free Download. You can read online Plant Metabolic Engineering and write the review.

This volume looks at the latest techniques used by researchers to study various aspects of plant metabolic engineering. The chapters in this book cover topics such as bioinformatics tools used to discover new genes and pathways; heterologous expression of biosynthetic genes in plant and microbial systems; and omics technologies, such as transcriptomics, proteomics, metabolomics, and data analysis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Plant Metabolic Engineering: Methods and Protocols is a valuable resource for biologists, chemists, biotechnologists, students, and broad cohorts of researchers who works in the fields of plant metabolism and metabolic engineering.
Plant secondary metabolism is an economically important source of fine chemicals, such as drugs, insecticides, dyes, flavours, and fragrances. Moreover, important traits of plants such as taste, flavour, smell, colour, or resistance against pests and diseases are also related to secondary metabolites. The genetic modification of plants is feasible nowadays. What does the possibility of engineering plant secondary metabolite pathways mean? In this book, firstly a general introduction is given on plant secondary metabolism, followed by an overview of the possible approaches that could be used to alter secondary metabolite pathways. In a series of chapters from various authorities in the field, an overview is given of the state of the art for important groups of secondary metabolites. No books have been published on this topic so far. This book will thus be a unique source of information for all those involved with plants as chemical factories of fine chemicals and those involved with the quality of food and ornamental plants. It will be useful in teaching graduate courses in the field of metabolic engineering in plants.
Learn more about foundational and advanced topics in metabolic engineering in this comprehensive resource edited by leaders in the field Metabolic Engineering: Concepts and Applications delivers a one-stop resource for readers seeking a complete description of the concepts, models, and applications of metabolic engineering. This guide offers practical insights into the metabolic engineering of major cell lines, including E. Coli, Bacillus and Yarrowia Lipolytica, and organisms, including human, animal, and plant). The distinguished editors also offer readers resources on microbiome engineering and the use of metabolic engineering in bioremediation. Written in two parts, Metabolic Engineering begins with the essential models and strategies of the field, like Flux Balance Analysis, Quantitative Flux Analysis, and Proteome Constrained Models. It also provides an overview of topics like Pathway Design, Metabolomics, and Genome Editing of Bacteria and Eukarya. The second part contains insightful descriptions of the practical applications of metabolic engineering, including specific examples that shed light on the topics within. In addition to subjects like the metabolic engineering of animals, humans, and plants, you’ll learn more about: Metabolic engineering concepts and a historical perspective on their development The different modes of analysis, including flux balance analysis and quantitative flux analysis An illuminating and complete discussion of the thermodynamics of metabolic pathways The Genome architecture of E. coli, as well as genome editing of both bacteria and eukarya An in-depth treatment of the application of metabolic engineering techniques to organisms including corynebacterial, bacillus, and pseudomonas, and more Perfect for students of biotechnology, bioengineers, and biotechnologists, Metabolic Engineering: Concepts and Applications also has a place on the bookshelves of research institutes, biotechnological institutes and industry labs, and university libraries. It's comprehensive treatment of all relevant metabolic engineering concepts, models, and applications will be of use to practicing biotechnologists and bioengineers who wish to solidify their understanding of the field.
This book presents detailed practical information on important methods used in the engineering of plant secondary metabolism pathways and the acquisition of essential knowledge in performing this activity, including important advances and emerging strategies.
Written by leading international experts in the field of plant metabolic engineering, this book discusses how the technology can be applied. Applications resulting from metabolic engineering are expected to play a very important role in the future of plant breeding: for example, in the fields of improved resistance or improved traits concerning health promoting constituents, as well as in the production of fine chemicals such as medicines, flavors and fragrances.
Various plant metabolites are useful for human life, and the induction and reduction of these metabolites using modern biotechnical technique is of enormous potential important especially in the fields of agriculture and health. Plant Metabolism and Biotechnology describes the biosynthetic pathways of plant metabolites, their function in plants, and some applications for biotechnology. Topics covered include: biosynthesis and metabolism of starch and sugars lipid biosynthesis symbiotic nitrogen fixation sulfur metabolism nucleotide metabolism purine alkaloid metabolism nicotine biosynthesis terpenoid biosynthesis benzylisoquinoline alkaloid biosynthesis monoterpenoid indole alkaloid biosynthesis flavonoid biosynthesis pigment biosynthesis: anthocyanins, betacyanins and carotenoids metabolomics in biotechnology Plant Metabolism and Biotechnology is an essential guide to this important field for researchers and students of biochemistry, plant biology, metabolic engineering, biotechnology, food science, agriculture, and medicine.
A collection of papers that comprehensively describe the major areas of research on lipid metabolism of plants. State-of-the-art knowledge about research on fatty acid and glycerolipid biosynthesis, isoprenoid metabolism, membrane structure and organization, lipid oxidation and degradation, lipids as intracellular and extracellular messengers, lipids and environment, oil seeds and gene technology is reviewed. The different topics covered show that modern tools of plant cellular and molecular biology, as well as molecular genetics, have been recently used to characterize several key enzymes of plant lipid metabolism (in particular, desaturases, thioesterases, fatty acid synthetase) and to isolate corresponding cDNAs and genomic clones, allowing the use of genetic engineering methods to modify the composition of membranes or storage lipids. These findings open fascinating perspectives, both for establishing the roles of lipids in membrane function and intracellular signalling and for adapting the composition of seed oil to the industrial needs. This book will be a good reference source for research scientists, advanced students and industrialists wishing to follow the considerable progress made in recent years on plant lipid metabolism and to envision the new opportunities offered by genetic engineering for the development of novel oil seeds.
Plant Metabolism, Second Edition focuses on the processes, principles, and methodologies involved in the metabolism of higher plants. The book first elaborates on cell structure and function, enzymes, and catabolism. Discussions focus on the control of respiration, conservation of the energy liberated in respiration, chemical pathways of respiration, enzymes in the living cell, prosthetic groups and coenzymes, protein nature of enzymes, general structure of plant cells, and osmotic behavior of cells. The manuscript then tackles anabolism and secondary plant products. Topics include phenylpropanoids, flavonoids, isoprenoid compounds, assimilation of nitrogen and sulfur, synthesis of sucrose and polysaccharides, location of the photosynthetic apparatus, influence of external factors on the rate of photosynthesis, and general nature of photosynthesis. The text takes a look at growth and differentiation, absorption, secretion, and translocation, secondary plant products, and regulation of metabolism. The publication is a valuable source of data for plant science experts and researchers interested in plant metabolism.
Metabolic and cellular engineering, as presented in this book, is a powerful alliance of two technologies: genetics-molecular biology and fermentation technology. Both are driven by continuous refinement of the basic understanding of metabolism, physiology and cellular biology (growth, division, differentiation), as well as the development of new mathematical modeling techniques. The authors' approach is original in that it integrates several disciplines into a coordinated scheme, i.e. microbial physiology and bioenergetics, thermodynamics and enzyme kinetics, biomathematics and biochemistry, genetics and molecular biology. Thus, it is called a transdisciplinary approach (TDA). The TDA provides the basis for the rational design of microorganisms or cells in a way that has rarely been utilized to its full extent.
Over the past decade, advances in molecular biology have provided the impetus for a resurgence of interest in plant metabolism. At a general level, the potential for modifying the quantity or quality of harvestable crop products through genetic manipulation has provided an agronomic rationale for seeking a greater understanding of primary plant metabolism and its regulation. Moreover, the now facile techniques for transformation of many plant species and the consequential capacity to manipulate the amounts of specific individual enzymes within specific cell types provides an exciting direct approach for studying metabolic problems. Such transgenic plants are also becoming invaluable tools in studies at the interface between metabolism and other sub-disciplines such as physiology and ecology. The interest generated in plant metabolism by these developments has also encouraged the re-introduction of more conventional biochemical techniques for metabolic analysis. Finally, in common with other areas of cell biology, the wealth of information that can be obtained at the nucleic acid level has provided the stimulus for identification and characterisation of metabolic processes in far greater detail than previously envisaged. The result of these advances it that researchers now have the confidence to address problems in plant metabolism at levels not previously attempted. This book presents the proceedings of an international conference held on 9-11 January 1997 at St Hugh's College, Oxford under the auspices of the Phytochemical Society of Europe.