Download Free Plant Adaptation To Global Climate Change Book in PDF and EPUB Free Download. You can read online Plant Adaptation To Global Climate Change and write the review.

Plant Perspectives to Global Climate Changes: Developing Climate-Resilient Plants reviews and integrates currently available information on the impact of the environment on functional and adaptive features of plants from the molecular, biochemical and physiological perspectives to the whole plant level. The book also provides a direction towards implementation of programs and practices that will enable sustainable production of crops resilient to climatic alterations. This book will be beneficial to academics and researchers working on stress physiology, stress proteins, genomics, proteomics, genetic engineering, and other fields of plant physiology. Advancing ecophysiological understanding and approaches to enhance plant responses to new environmental conditions is critical to developing meaningful high-throughput phenotyping tools and maintaining humankind's supply of goods and services as global climate change intensifies. - Illustrates the central role for plant ecophysiology in applying basic research to address current and future challenges for humans - Brings together global leaders working in the area of plant-environment interactions and shares research findings - Presents current scenarios and future plans of action for the management of stresses through various approaches
This book addresses the crucial aspects of plant adaptation strategies in higher as well as lower plant groups. Stress induced by changing environmental conditions disrupts or alter various physiological and metabolic processes in organisms, however, plants have evolved various defence strategies to cope with external perturbations. The book discusses speciation changes in response to extreme ecological conditions such as cold, heat, aridity, salinity, altitude, incidental UV radiation and high light intensity, which are particularly relevant in the current scenario of global warming. It also explores the effects of human activities and emission of phytotoxic gases. Further, it describes the overall adaptation strategies and the multifaceted mechanisms involved (integrated complex mechanism), ranging from morphological to molecular alterations, focusing on plants’ capabilities to create an inner environment to survive the altered or extreme conditions. This book is a valuable tool for graduate and research students, as well as for anyone working on or interested in adaptation strategies in plants.
Plant Adaptation to Global Climate Change discusses the issues of the impact of climate change factors (abiotic and biotic) on vegetation. This book also deals with simulation modeling approaches to understanding the long-term effects of different environmental factors on vegetation. This book is a valuable resource for the environmental science research community, including those interested in assessing climate change impacts on vegetation and researchers working on simulation modeling.
Plants constantly cope with unfavourable ecosystem conditions, which often prevent them reaching their full genetic potential in terms of growth, development and productivity. This book covers plants' responses to these environmental changes, namely, the modulation of amino acids, peptides and amines to combat both biotic and abiotic stress factors. Bringing together the most recent developments, this book is an important resource for researchers and students of crop stress and plant physiology.
This two-volume set highlights the various innovative and emerging techniques and molecular applications that are currently being used in plant abiotic stress physiology. Volume 1: Responses and Adaptations focuses on the responses and adaptations of plants to stress factors at the cellular and molecular levels and offers a variety of advanced management strategies and technologies. Volume 2: Molecular Advancements introduces a range of state-of-the-art molecular advances for the mitigation of abiotic stress in plants. With contributions from specialists in the field, Volume 1 first discusses the physiology and defense mechanisms of plants and the various kinds of stress, such as from challenging environments, climate change, and nutritional deficiencies. It goes on to discuss trailblazing management techniques that include genetics approaches for improving abiotic stress tolerance in crop plants along with CRISPR/CAS-mediated genome editing technologies. Volume 2 discusses how plants have developed diverse physiological and molecular adjustments to safeguard themselves under challenging conditions and how emerging new technologies can utilize these plant adaptations to enhance plant resistance. These include using plant-environment interactions to develop crop species that are resilient to climate change, applying genomics and phenomics approaches from the study of abiotic stress tolerance and more. Agriculture today faces countless challenges to meet the rising need for sustainable food supplies and guarantees of high-quality nourishment for a quickly increasing population. To ensure sufficient food production, it is necessary to address the difficult environmental circumstances that are causing cellular oxidative stress in plants due to abiotic factors, which play a defining role in shaping yield of crop plants. These two volumes help to meet these challenges by providing a rich source of information on plant abiotic stress physiology and effective management techniques.
Global warming continues to gain importance on the international agenda and calls for action are heightening. Yet, there is still controversy over what must be done and what is needed to proceed. Policy Implications of Greenhouse Warming describes the information necessary to make decisions about global warming resulting from atmospheric releases of radiatively active trace gases. The conclusions and recommendations include some unexpected results. The distinguished authoring committee provides specific advice for U.S. policy and addresses the need for an international response to potential greenhouse warming. It offers a realistic view of gaps in the scientific understanding of greenhouse warming and how much effort and expense might be required to produce definitive answers. The book presents methods for assessing options to reduce emissions of greenhouse gases into the atmosphere, offset emissions, and assist humans and unmanaged systems of plants and animals to adjust to the consequences of global warming.
This book focuses on how climate affects or affected the biosphere and vice versa both in the present and in the past. The chapters describe how ecosystems from the Antarctic and Arctic, and from other latitudes, respond to global climate change. The papers highlight plant responses to atmospheric CO2 increase, to global warming and to increased ultraviolet-B radiation as a result of stratospheric ozone depletion.
Global Climate Change presents both practical and theoretical aspects of global climate change from across geological periods. It addresses holistic issues related to climate change and its contribution in triggering the temperature increase with a multitude of impacts on natural processes. As a result, it helps to identify the gaps between policies that have been put in place and the continuously increasing emissions. The challenges presented include habitability, biodiversity, natural resources, and human health. It is organized into information on the past, present, and future of climate change to lead to a more complete understanding and therefore effective solutions.Placing an emphasis on recent climate change research, Global Climate Change helps to bring researchers and graduate students in climate science, environmental science, and sustainability up to date on the science of climate change so far and presents a baseline for how to move into the future effectively. - Addresses the variety of challenges associated with climate change, along with possible solutions - Includes suggestions for future research on climate change - Covers climate change holistically, including global and regional scales, ecosystems, agriculture, energy, and sustainability - Presents both practical and theoretical research, including coverage of climate change over various geological periods
A major task of our time is to ensure adequate food supplies for the world's current population (now nearing 7 billion) in a sustainable way while protecting the vital functions and biological diversity of the global environment. The task of providing for a growing population is likely to be even more difficult in view of actual and potential changes in climatic conditions due to global warming, and as the population continues to grow. Current projections suggest that the world's temperatures will rise 1.8-4.0 by 2100 and population may reach 8 billion by the year 2025 and some 9 billion by mid-century, after which it may stabilize. This book addresses these critical issues by presenting the science needed not only to understand climate change effects on crops but also to adapt current agricultural systems, particularly in regard to genetics, to the changing conditions. Crop Adaptation to Climate Change covers a spectrum of issues related to both crops and climatic conditions. The first two sections provide a foundation on the factors involved in climate stress, assessing current climate change by region and covering crop physiological responses to these changes. The third and final section contains chapters focused on specific crops and the current research to improve their genetic adaptation to climate change. Written by an international team of authors, Crop Adaptation to Climate Change is a timely look at the potentially serious consequences of climate change for our global food supply, and is an essential resource for academics, researchers and professionals in the fields of crop science, agronomy, plant physiology and molecular biology; crop consultants and breeders; as well as climate and food scientists.
The global population is growing at an alarming rate and is anticipated to reach about 9.6 billion by the end of 2050. Addressing the problem of food scarcity for budding population vis-à-vis environmental changes is the main challenge plant biologists face in the contemporary era. Plant growth and productivity are scarce in many areas of the world due to a wide range of environmental stresses. The productive land is dwindling progressively by various natural and anthropogenic means that lead to enormous crop losses worldwide. Plants often experience these stresses and have the ability to withstand them. However, when the stress exceeds the normal tolerance level, plants accumulate organic osmolytes, osmoprotectants, cryoprotectants and antioxidant enzymes, which helps them tolerate these stresses and assist in their acclimatization towards the particular ambiance needed for maintaining their growth and development. Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment, Volume 1 discuss drought and temperature stresses and their mitigation through different means. This volume illuminates how plants that are bombarded by diverse and changing environmental stimuli, undergo appropriate physiological alterations that enable their survival. The information covered in the book is also useful in building apposite strategies to counter abiotic and biotic stresses in plants. Written by a diverse group of internationally renowned scholars, Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment, Volume 1 is a concise yet comprehensive resource that will be beneficial for the researchers, students, environmentalists and soil scientists of this field.