Download Free Planar Lipid Bilayers Book in PDF and EPUB Free Download. You can read online Planar Lipid Bilayers and write the review.

Advances in Planar Lipid Bilayers and Liposomes volumes cover a broad range of topics, including main arrangements of the reconstituted system, namely planar lipid bilayers as well as spherical liposomes. The invited authors present the latest results of their own research groups in this exciting multidisciplinary field. Incorporates contributions from newcomers and established and experienced researchers Explores the planar lipid bilayer systems and spherical liposomes from both theoretical and experimental perspectives Serves as an indispensable source of information for new scientists
The lipid bilayer is the most basic structural element of cell membranes. A wide range of topics are covered in this volume, from the origin of the lipid bilayer concept, to current applications and experimental techniques. Each chapter in this volume is self-contained and describes a group's research, providing detailed methodology and key references useful for researchers. Lipid bilayer research is of great interest to many because of it's interdisciplinary nature.·Provides an overview of decades of research on the lipid bilayer·38 contributed chapters, by leading scientists, cover a wide range of topics in one authoritative volume·Book coincides with 40th anniversary of BLM
It is now over 30 years since the idea of ion-conducting pores burst on the elec trophysiological scene, 15 years since these were generalIy realized to be mem brane-spanning proteins, and 10 years since the first observations of single ion channels from higher organisms were made. During the past 5 years, several integral membrane channel proteins have been purified in a functionalIy competent state: the nicotinic acetylcholine receptor, the Na + channel, mitochondrial "VDAC," and a variety of porins. The stage is thus set to attack ion channels in the same ways that biochemists have been attacking enzymes for decades: isolation folIowed by functional analysis in as simple a system as possible, with a view towards understanding the molecular mechanisms ofthe protein's behavior and how this is related to the underlying molecular structure. This is always a daunting task, alI the more so with ion channels because of our still primitive and scanty understanding of channel structures and because of the difficulty in iso lating functionally active channel proteins. In this volume, which can be considered a biochemically slanted companion to Sakmann and Neher's Single-Channel Recording, I have tried to present a view of the current landscape of ion-channel reconstitution. These chapters illustrate not only the different approaches and techniques of the major practitioners of ion channel reconstitution but, as importantly, the varied motivations for doing this kind of work.
Channels and transporters are multi-functional proteins that mediate substrate transport and signal transmission and simultaneously act as regulators for other proteins and biosensors for environmental materials. Patch clamping is an epoch-making technique that allows researchers to perform real-time measurements of electrogenic channel/transporter functions at the single/multiple molecular level. This book describes not only the conventional patch clamp techniques but also their newly developed variations or applications, such as perforated patch, slice patch, blind patch, in vivo patch, imaging patch, smart patch, and automated patch clamping. These patch clamp techniques are now essential and are extensively used across the life sciences and in related industries. With plain and practical descriptions of patch clamping and how to carry it out, especially for beginners, the book also shows how widely and exquisitely the patch clamp techniques can be applied by expert electrophysiologists. This work serves as a useful guide for young researchers and students in training and laboratory courses as well as for senior researchers who wish to extend their repertoire of techniques.
Biological Soft Matter Explore a comprehensive, one-stop reference on biological soft matter written and edited by leading voices in the field Biological Soft Matter: Fundamentals, Properties and Applications delivers a unique and indispensable compilation of up-to-date knowledge and material on biological soft matter. The book presents a thorough overview about biological soft matter, beginning with different substance classes, including proteins, nucleic acids, lipids, and polysaccharides. It goes on to describe a variety of superstructures and aggregated and how they are formed by self-assembly processes like protein folding or crystallization. The distinguished editors have included materials with a special emphasis on macromolecular assembly, including how it applies to lipid membranes, and proteins fibrillization. Biological Soft Matter is a crucial resource for anyone working in the field, compiling information about all important substance classes and their respective roles in forming superstructures. The book is ideal for beginners and experts alike and makes the perfect guide for chemists, physicists, and life scientists with an interest in the area. Readers will also benefit from the inclusion of: An introduction to DNA nano-engineering and DNA-driven nanoparticle assembly Explorations of polysaccharides and glycoproteins, engineered biopolymers, and engineered hydrogels Discussions of macromolecular assemblies, including liquid membranes and small molecule inhibitors for amyloid aggregation A treatment of inorganic nanomaterials as promoters and inhibitors of amyloid fibril formation An examination of a wide variety of natural and artificial polymers Perfect for materials scientists, biochemists, polymer chemists, and protein chemists, Biological Soft Matter: Fundamentals, Properties and Applications will also earn a place in the libraries of biophysicists and physical chemists seeking a one-stop reference summarizing the rapidly evolving topic of biological soft matter.
An overview of recent experimental and theoretical developments in the field of the physics of membranes, including new insights from the past decade. The author uses classical thermal physics and physical chemistry to explain our current understanding of the membrane. He looks at domain and 'raft' formation, and discusses it in the context of thermal fluctuations that express themselves in heat capacity and elastic constants. Further topics are lipid-protein interactions, protein binding, and the effect of sterols and anesthetics. Many seemingly unrelated properties of membranes are shown to be intimately intertwined, leading for instance to a coupling between membrane state, domain formation and vesicular shape. This also applies to non-equilibrium phenomena like the propagation of density pulses during nerve activity. Also included is a discussion of the application of computer simulations on membranes. For both students and researchers of biophysics, biochemistry, physical chemistry, and soft matter physics.
Benjamin Franklin was the first to report the phenomenon of oil's power to still troubled waters and to speculate on why it happened. A century later Lord Rayleigh performed an identical experiment. Irving Langmuir did it with minor variations in 1917, and won a Nobel Prize for it. ThenLangmuir's work was followed by a Dutch pediatrician's in 1925. p Each experimenter saw a little more in the result than his predecessor had seen, and the sciences of physics, chemistry and biology have all been illuminated by the work. p Charles Tanford reflects on the evolving nature of scienceand of individual scientists. Recounting innovations in each trial, he follows the classic experiment from Franklin's drawing room to our present-day institutionalized scientific establishments and speculates on the ensuing changes in our approach to scientific inquiry.
Giant vesicles are widely used as a model membrane system, both for basic biological systems and for their promising applications in the development of smart materials and cell mimetics, as well as in driving new technologies in synthetic biology and for the cosmetics and pharmaceutical industry. The reader is guided to use giant vesicles, from the formation of simple membrane platforms to advanced membrane and cell system models. It also includes fundamentals for understanding lipid or polymer membrane structure, properties and behavior. Every chapter includes ideas for further applications and discussions on the implications of the observed phenomena towards understanding membrane-related processes. The Giant Vesicle Book is meant to be a road companion, a trusted guide for those making their first steps in this field as well as a source of information required by experts. Key Features • A complete summary of the field, covering fundamental concepts, practical methods, core theory, and the most promising applications • A start-up package of theoretical and experimental information for newcomers in the field • Extensive protocols for establishing the required preparations and assays • Tips and instructions for carefully performing and interpreting measurements with giant vesicles or for observing them, including pitfalls • Approaches developed for investigating giant vesicles as well as brief overviews of previous studies implementing the described techniques • Handy tables with data and structures for ready reference
This handbook provides a unique overview of lipid membrane fundamentals and applications. The fascinating world of lipids that harbor and govern so many biological functionalities are discussed within the context of membrane structures, interactions, and shape evolution. Beyond the fundamentals in lipid science, this handbook focuses on how scientists are building bioinspired biomimetic systems for applications in medicine, cosmetics, and nanotechnology. Key Features: Includes experimental and theoretical overviews on the role of lipids, with or without associated biomolecules, as structural components imparting distinct membrane shapes and intermembrane interactions Covers the mechanisms of lipid-membrane curvature, by peptide and protein binding, and the roles of signalling lipids and the cytoskeleton in plasma membrane shape evolution Covers advanced X-ray and force measurement techniques Discusses applications in biomedicine, cosmetics, and nanotechnology, including lipid vectors in nucleic acid, drug delivery in dermal applications, and lipid-based sensors and artificial biointerfaces Covers artificial membranes from block copolymers, synthetic copolypeptides, and recombinant proteins Includes an exciting section that explores the role of lipids in the origin of life in hydrothermal conditions This book is a highly informative companion for professionals in biophysics, biochemistry, physical chemistry, and material and pharmaceutical sciences and bioengineering.