Download Free Planar Cell Polarization During Development Book in PDF and EPUB Free Download. You can read online Planar Cell Polarization During Development and write the review.

Cellular polarization is key to all cellular functions. Our perceptions, which are derived from our senses, depend on the proper cellular polarization of our sense organs, such as the eyes or ears. Much of this book examines the different aspects in cellular polarization and its researched role in the Drosophila, where the first planar cellular polarity (PCP) gene was discovered over 20 years ago. Topics also include: From flies to man: how we are polarized, Marking an embryo work, Cellular polarization at its functional best, Hearing and seeing your environment, and From a cell to an organ.This series represents timely issues in developmental biology. It provides annual reviews of selected topics, written from the perspectives of leading investigators in the field of development.* Presents many various organisms such as flies, fish, frogs and mice* Offers over 40 exceptional illustrations* First of its kind to include new data and detailed models on cell planar polarization
Cell Polarity in Development and Disease offers insights into the basic molecular mechanisms of common diseases that arise as a result of a loss of ordered organization and intrinsic polarity. Included are diseases affecting highly polarized epithelial tissues in the lung and kidney, as well as loss and gain of cell polarity in the onset and progression of cancer. This book provides a basic resource for understanding the biology of polarity, offering a starting point for those thinking of targeting cell polarity for translational medical research. - Provides basic science understanding of cell polarity disease and development - Covers diseases affecting polarized epithelial tissues in the lung and kidney, also covering the progression of cancer - Includes historical context of cell polarity research for potential future breakthroughs
The establishment of polarity is a fundamental feature in eukaryotic development. Polarity in Plants provides an account of current research into the mechanisms by which polarity is generated at the level of the cell, organ and organism in plants, drawing especially on recent work with model organisms. The emphasis is on the use of the techniques of molecular genetics to dissect molecular mechanisms. This is the first volume to bring together the diverse aspects of polarity in plant development.
This work provides a state-of-the art overview on the most relevant aspects of cell polarity. Volume 2 discusses the physiological and pathophysiological relevance of cell polarity. It especially focuses on pathophysiological conditions in which one or several aspects of cell polarity are impaired, and in which a loss of cell polarity possibly contributes to disease (e.g. epithelial-to-mesenchymal transition in cancer, role of polarity proteins in cancer). Both volumes are intended for professors, group leaders and researchers in cell biology as well as for medical professionals working in anatomy, cell biology, physiology, pathology and tumor biology.
This open access book describes marked advances in imaging technology that have enabled the visualization of phenomena in ways formerly believed to be completelyimpossible. These technologies have made major contributions to the elucidation of the pathology of diseases as well as to their diagnosis and therapy. The volume presents various studies from molecular imaging to clinical imaging. It also focuses on innovative, creative, advanced research that gives full play to imaging technology inthe broad sense, while exploring cross-disciplinary areas in which individual research fields interact and pursuing the development of new techniques where they fuse together. The book is separated into three parts, the first of which addresses the topic of visualizing and controlling molecules for life. Th e second part is devoted to imaging of disease mechanisms, while the final part comprises studies on the application of imaging technologies to diagnosis and therapy. Th e book contains the proceedings of the 12th Uehara International Symposium 2017, “Make Life Visible” sponsored by the Uehara Memorial Foundation and held from June 12 to 14, 2017. It is written by leading scientists in the field and is an open access publication under a CC BY 4.0 license.
This book presents an overview of the entire field of cadherin research and provides the current basic concept of cadherins. Cadherins have been widely accepted as key regulators of animal development and physiological functions, and it also has become clear that they play essential roles in various human diseases. With contributions by leading scientists, the book covers various aspects of the cadherin superfamily including the history of cadherin research, basic properties of classical cadherins as well as non-classical cadherins, cadherin-associated proteins, and the roles of cadherins in health and diseases. In addition, the book presents some contradictory results and important unanswered questions, and the authors propose their working hypotheses or future directions, to inspire future studies. This volume enables graduate students and young researchers to learn the basics and gain a comprehensive image of the cadherin superfamily, and experts in the field will easily find various topics of interest in relevant areas of study. Additionally, a list of cadherin-related diseases is included for quick reference to cadherins in human diseases.
This work provides a state-of-the art overview on the most relevant aspects of cell polarity. Volume 1 addresses cell polarity and cell migration (front-rear polarity), cell polarity and barrier formation (apico-basal polarity) and neuronal polarity. It particularly focuses on cell polarity at the molecular level and the underlying molecular mechanisms. It also elaborates the common principles and mechanisms that regulate cellular polarization in different cell types and contexts. Both volumes are intended for professors, group leaders and researchers in cell biology as well as medical professionals in the fields of anatomy, cell biology, physiology, pathology and tumor biology.
Amphibian Models of Development and Disease, Volume 145 in the Current Topics in Developmental Biology series, highlights new advances in the field written by an international board of experts. New chapters in this release include Building a ciliated epithelium: Transcriptional regulation and radial intercalation of multiciliated cells, Biomechanics of Amphibian Morphogenesis, Planar cell polarity during neural tube closure, Xenopus neural crest and its relevance to human disease, Endoderm organogenesis, From egg to embryo in marsupial frogs, Evo-devo lessons from the analysis of Xenopus genomes, Transcriptional regulation during zygotic genome activation, Proteomics and metabolomics for cell lineage analysis in frog embryos, and more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Current Topics in Developmental Biology series - Includes the latest information on Amphibian Models of Development and Disease
Amphibian embryos are supremely valuable in studies of early vertebrate development because they are large, handle easily, and can be obtained at many interesting stages. And of all the amphibians available for study, the most valuable is Xenopus laevis,which is easy to keep and ovulates at any time of year in response to simple hormone injections. Xenopusembryos have been studied for years but this is a particularly exciting time for the field. Techniques have become available very recently that permit a previously impossible degree of manipulation of gene expression in intact embryos, as well as the ability to visualize the results of such manipulation. As a result, a sophisticated new understanding of Xenopusdevelopment has emerged, which ensures the species’ continued prominent position among the organisms favored for biological investigation. This manual contains a comprehensive collection of protocols for the study of early development in Xenopusembryos. It is written by several of the field’s most prominent investigators in the light of the experience they gained as instructors in an intensive laboratory course taught at Cold Spring Harbor Laboratory since 1991. As a result it contains pointers, hints, and other technical knowledge not readily available elsewhere. This volume is essential reading for all investigators interested in the developmental and cell biology of Xenopusand vertebrates generally. Many of the techniques described here are illustrated in an accompanying set of videotapeswhich are cross-referenced to the appropriate section of the manual.